Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 110(44): 12145-9, 2006 Nov 09.
Article in English | MEDLINE | ID: mdl-17078609

ABSTRACT

The purpose of this research was to explore the unstirred, ferroin-catalyzed Belousov-Zhabotinsky (BZ) reaction as an experimental model for the response of excitable media to small perturbations (slightly larger than the threshold for excitations). Following Showalter et al. (Showalter, K.; Noyes, R. M.; Turner, H. J.Am. Chem. Soc. 1979, 101, 7463-69), we used a positively biased silver electrode to release silver ions into a BZ reaction mixture, removing bromide ions and causing an excitation if sufficient bromide was removed. We found (1) a scaling region in which the delay before activation increased linearly as the size of the perturbation decreased, qualitatively consistent with but not fully explained by the Oregonator of Field et al. (Field, R. J.; Körõs, E.; Noyes, R. M. J. Am. Chem. Soc. 1972, 94, 8649-64); (2) evidence for a 10 s oligomerization time scale; and (3) that activations were always delayed until after the end of a pulse of current, with the delay essentially constant for sufficiently long pulses, an effect not seen in simple ODE models but consistent with the anomalously large current apparently required for activation (Showalter, K.; Noyes, R. M. J. Am. Chem. Soc. 1976, 98, 3730-31) and explainable by bromide transport. Overall, the BZ system appeared to be well-suited as an experimental prototype, despite its complexity.


Subject(s)
Bromides/chemistry , Models, Chemical , Phenanthrolines/chemistry , Silver/chemistry , Catalysis , Computer Simulation , Ions , Kinetics , Time
2.
J Chem Phys ; 123(6): 64502, 2005 Aug 08.
Article in English | MEDLINE | ID: mdl-16122321

ABSTRACT

The prototype experimental example of "spontaneous" pattern formation in an unstirred chemical medium is the oscillatory Belousov-Zhabotinsky (BZ) reaction: target patterns of outward-moving concentric rings are readily observed when the reaction is run in a thin layer in a Petri dish. In many experimental runs, new target centers appeared to form closer to pre-existing target centers than expected in a randomized model. Here we describe a simple direct test for the presence of temporal order in the spatiotemporal dynamics of target nucleation, and apply this test to detect significant temporal order in target formation in the ferroin-catalyzed BZ reaction. We also describe how mixing heterogeneity can generate temporal order, even in the absence of heterogeneous physical nucleating centers.

SELECTION OF CITATIONS
SEARCH DETAIL
...