Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Oncol ; 9(1): 260-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25226813

ABSTRACT

MET targeted therapies are under clinical evaluation for non-small-cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors (TKI) against MET have varying degrees of specificity. Tivantinib (ARQ 197) is reported to be a non-ATP competitive selective MET inhibitor. We aimed to compare the activity of tivantinib to established MET TKIs in a panel of NSCLC cell lines characterized by their MET dependency and by different relevant genotypes. A549, H3122, PC9 and HCC827, their respective resistant clones PC9 GR4 and HCC827 GR6 and the MET amplified cell lines H1993 and EBC-1 were treated in vitro with tivantinib, crizotinib or PHA-665752. Crizotinib and PHA-665752 showed growth inhibition restricted to MET dependent cell lines. The pattern of activity was related to MET inhibition and downstream signaling inhibition of AKT and ERK1/2, resulting in G0/G1 cycle arrest and apoptosis. In contrast, tivantinib possessed more potent anti-proliferative activity that was not restricted to only MET dependent cell lines. Tivantinib did not inhibit cellular MET activity or phosphorylation of downstream signaling proteins AKT or ERK1/2 in either MET dependent or independent cell lines. Cell cycle analysis demonstrated that tivantinib induced a G2/M arrest and induced apoptosis. Tivantinib but not crizotinib effected microtubule dynamics, disrupting mitotic spindles by a mechanism consistent with it functioning as a microtubule depolymerizer. Tivantinib activity is independent of MET signaling in NSCLC and suggests alternative mechanisms of action that should be considered when interpreting the results from on-going clinical studies.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , MAP Kinase Signaling System/drug effects , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyrrolidinones/pharmacology , Quinolines/pharmacology , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Crizotinib , Humans , Indoles/pharmacology , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MAP Kinase Signaling System/genetics , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation/drug effects , Phosphorylation/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Pyrazoles/pharmacology , Pyridines/pharmacology , Sulfones/pharmacology
2.
J Urol ; 183(6): 2395-402, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20403623

ABSTRACT

PURPOSE: We assessed the ability of different classes of histone deacetylase inhibitors to target tumor and invasive suppressor genes in a panel of bladder carcinoma cell lines using reverse phase protein arrays. MATERIALS AND METHODS: Three poorly, moderately and highly invasive cell lines were exposed to histone deacetylase inhibitors, trichostatin A, apicidin, valproic acid (Sigma) and MS-275 (AXXORA) for 0 to 36 hours. Lysates were harvested and arrayed in a 10-fold dilution series in duplicate. Data points were collected and analyzed using a concentration interpolation methodology after normalization. RESULTS: Protein expression profiles revealed up-regulation of gamma-catenin in highly invasive lines, and alpha-catenin in moderately and highly invasive lines after exposure to all histone deacetylase inhibitors, apicidin and MS-275, respectively. Gelsolin was up-regulated in poorly and moderately invasive lines after exposure to all histone deacetylase inhibitors. Desmoglein was down-regulated in poorly and moderately invasive cell lines by all 4 histone deacetylase inhibitors, in addition to decreased FAK (Transduction Laboratories) expression in moderately and highly invasive lines exposed to valproic acid and MS-275. CONCLUSIONS: Different histone deacetylase inhibitor classes have the potential to modulate tumor and invasive suppressor gene expression, identifying histone deacetylase inhibitors as potential therapeutic agents for bladder cancer. Reverse phase protein arrays enable high throughput screening of multiple compounds to assess the expression profile of specific protein groups targeted for therapy.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Genes, Suppressor/drug effects , Histone Deacetylase Inhibitors/pharmacology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Humans , Neoplasm Invasiveness , Protein Array Analysis , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...