Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; 23(3): e14056, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38062919

ABSTRACT

Human life expectancy is constantly increasing and aging has become a major risk factor for many diseases, although the underlying gene regulatory mechanisms are still unclear. Using transcriptomic and chromosomal conformation capture (Hi-C) data from human skin fibroblasts from individuals across different age groups, we identified a tight coupling between the changes in co-regulation and co-localization of genes. We obtained transcription factors, cofactors, and chromatin regulators that could drive the cellular aging process by developing a time-course prize-collecting Steiner tree algorithm. In particular, by combining RNA-Seq data from different age groups and protein-protein interaction data we determined the key transcription regulators and gene regulatory changes at different life stage transitions. We then mapped these transcription regulators to the 3D reorganization of chromatin in young and old skin fibroblasts. Collectively, we identified key transcription regulators whose target genes are spatially rearranged and correlate with changes in their expression, thereby providing potential targets for reverting cellular aging.


Subject(s)
Chromatin , Transcription Factors , Humans , Chromatin/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Cellular Senescence/genetics , Gene Expression Profiling
2.
bioRxiv ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38106037

ABSTRACT

Proteins on the cell membrane cluster to respond to extracellular signals; for example, adhesion proteins cluster to enhance extracellular matrix sensing; or T-cell receptors cluster to enhance antigen sensing. Importantly, the maturation of such receptor clusters requires transcriptional control to adapt and reinforce the extracellular signal sensing. However, it has been unclear how such efficient clustering mechanisms are encoded at the level of the genes that code for these receptor proteins. Using the adhesome as an example, we show that genes that code for adhesome receptor proteins are spatially co-localized and co-regulated within the cell nucleus. Towards this, we use Hi-C maps combined with RNA-seq data of adherent cells to map the correspondence between adhesome receptor proteins and their associated genes. Interestingly, we find that the transcription factors that regulate these genes are also co-localized with the adhesome gene loci, thereby potentially facilitating a transcriptional reinforcement of the extracellular matrix sensing machinery. Collectively, our results highlight an important layer of transcriptional control of cellular signal sensing.

3.
Mol Syst Biol ; 15(10): e9005, 2019 10.
Article in English | MEDLINE | ID: mdl-31657111

ABSTRACT

Single-cell transcriptomic studies are identifying novel cell populations with exciting functional roles in various in vivo contexts, but identification of succinct gene marker panels for such populations remains a challenge. In this work, we introduce COMET, a computational framework for the identification of candidate marker panels consisting of one or more genes for cell populations of interest identified with single-cell RNA-seq data. We show that COMET outperforms other methods for the identification of single-gene panels and enables, for the first time, prediction of multi-gene marker panels ranked by relevance. Staining by flow cytometry assay confirmed the accuracy of COMET's predictions in identifying marker panels for cellular subtypes, at both the single- and multi-gene levels, validating COMET's applicability and accuracy in predicting favorable marker panels from transcriptomic input. COMET is a general non-parametric statistical framework and can be used as-is on various high-throughput datasets in addition to single-cell RNA-sequencing data. COMET is available for use via a web interface (http://www.cometsc.com/) or a stand-alone software package (https://github.com/MSingerLab/COMETSC).


Subject(s)
Gene Expression Profiling/methods , Genetic Markers , Single-Cell Analysis/methods , Animals , Computational Biology , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Mice , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...