Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928516

ABSTRACT

Anthocyanins are a large group of water-soluble flavonoid pigments. These specialized metabolites are ubiquitous in the plant kingdom and play an essential role not only in plant reproduction and dispersal but also in responses to biotic and abiotic stresses. Anthocyanins are recognized as important health-promoting and chronic-disease-preventing components in the human diet. Therefore, interest in developing food crops with improved levels and compositions of these important nutraceuticals is growing. This review focuses on work conducted to elucidate the genetic control of the anthocyanin pathway and modulate anthocyanin content in eggplant (Solanum melongena L.) and tomato (Solanum lycopersicum L.), two solanaceous fruit vegetables of worldwide relevance. While anthocyanin levels in eggplant fruit have always been an important quality trait, anthocyanin-based, purple-fruited tomato cultivars are currently a novelty. As detailed in this review, this difference in the anthocyanin content of the cultivated germplasm has largely influenced genetic studies as well as breeding and transgenic approaches to improve the anthocyanin content/profile of these two important solanaceous crops. The information provided should be of help to researchers and breeders in devising strategies to address the increasing consumer demand for nutraceutical foods.


Subject(s)
Anthocyanins , Fruit , Solanum lycopersicum , Solanum melongena , Anthocyanins/analysis , Anthocyanins/metabolism , Solanum melongena/genetics , Solanum melongena/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Fruit/genetics , Fruit/metabolism , Fruit/chemistry , Biotechnology/methods , Plants, Genetically Modified/genetics , Plant Breeding/methods , Gene Expression Regulation, Plant , Crops, Agricultural/genetics , Crops, Agricultural/metabolism
2.
Hortic Res ; 9: uhac112, 2022.
Article in English | MEDLINE | ID: mdl-35795386

ABSTRACT

The Mediterranean basin countries are considered secondary centres of tomato diversification. However, information on phenotypic and allelic variation of local tomato materials is still limited. Here we report on the evaluation of the largest traditional tomato collection, which includes 1499 accessions from Southern Europe. Analyses of 70 traits revealed a broad range of phenotypic variability with different distributions among countries, with the culinary end use within each country being the main driver of tomato diversification. Furthermore, eight main tomato types (phenoclusters) were defined by integrating phenotypic data, country of origin, and end use. Genome-wide association study (GWAS) meta-analyses identified associations in 211 loci, 159 of which were novel. The multidimensional integration of phenoclusters and the GWAS meta-analysis identified the molecular signatures for each traditional tomato type and indicated that signatures originated from differential combinations of loci, which in some cases converged in the same tomato phenotype. Our results provide a roadmap for studying and exploiting this untapped tomato diversity.

3.
J Exp Bot ; 73(11): 3431-3445, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35358313

ABSTRACT

A comprehensive collection of 1254 tomato accessions, corresponding to European traditional and modern varieties, early domesticated varieties, and wild relatives, was analyzed by genotyping by sequencing. A continuous genetic gradient between the traditional and modern varieties was observed. European traditional tomatoes displayed very low genetic diversity, with only 298 polymorphic loci (95% threshold) out of 64 943 total variants. European traditional tomatoes could be classified into several genetic groups. Two main clusters consisting of Spanish and Italian accessions showed higher genetic diversity than the remaining varieties, suggesting that these regions might be independent secondary centers of diversity with a different history. Other varieties seem to be the result of a more recent complex pattern of migrations and hybridizations among the European regions. Several polymorphic loci were associated in a genome-wide association study with fruit morphological traits in the European traditional collection. The corresponding alleles were found to contribute to the distinctive phenotypic characteristic of the genetic varietal groups. The few highly polymorphic loci associated with morphological traits in an otherwise a low-diversity population suggests a history of balancing selection, in which tomato farmers likely maintained the morphological variation by inadvertently applying a high selective pressure within different varietal types.


Subject(s)
Solanum lycopersicum , Alleles , Farmers , Genetic Variation , Genome-Wide Association Study , Humans , Solanum lycopersicum/genetics , Phenotype , Polymorphism, Single Nucleotide
4.
Hortic Res ; 2022 01 18.
Article in English | MEDLINE | ID: mdl-35039852

ABSTRACT

In this study we investigated the transcriptome and epigenome dynamics of the tomato fruit during post-harvest in a landrace belonging to a group of tomatoes (Solanum lycopersicum L.) collectively known as "Piennolo del Vesuvio", all characterized by a long shelf-life. Expression of protein-coding genes and microRNAs as well as DNA methylation patterns and histone modifications were analysed in distinct post-harvest phases. Multi-omics data integration contributed to the elucidation of the molecular mechanisms underlying processes leading to long shelf-life. We unveiled global changes in transcriptome and epigenome. DNA methylation increased and the repressive histone mark H3K27me3 was lost as the fruit progressed from red ripe to 150 days post-harvest. Thousands of genes were differentially expressed, about half of which were potentially epi-regulated as they were engaged in at least one epi-mark change in addition to being microRNA targets in ~5% of cases. Down-regulation of the ripening regulator MADS-RIN and of genes involved in ethylene response and cell wall degradation was consistent with the delayed fruit softening. Large-scale epigenome reprogramming that occurred in the fruit during post-harvest likely contributed to delayed fruit senescence.

5.
Foods ; 10(11)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34828802

ABSTRACT

Consumer dissatisfaction with the flavor quality of many modern fresh market tomato varieties has fostered breeders' interest in sensory quality improvement, and the demand for traditional varieties, which are generally associated with better flavor. To achieve further knowledge on the factors influencing the sensory quality and consumers' preferences and perception, European traditional and modern fresh market tomato varieties were grown and evaluated in France, Italy, and Spain. Different growing conditions were tested in France (soilless vs. soil) and in Spain (open field vs. greenhouse), while in Italy fruits were evaluated at two ripening stages. Fruit quality was assessed by integrating physicochemical analyses, sensory profiles, and consumer tests. In all three countries, overall modern varieties were perceived as having more intense "tomato flavor" and "overall flavor" than traditional ones. In France and Spain, consumers' preferences were more oriented towards modern varieties than traditional ones. Significant growing condition effects were found on sensory and physicochemical traits, while the effect on consumers' overall liking was not significant, largely depending on the genotype. A fair agreement between product configurations from descriptive analysis by trained assessors and Check-All-That-Apply (CATA) questions by consumers was observed. Penalty-lift analysis based on CATA allowed identifying positive and negative drivers of liking.

6.
Int J Mol Sci ; 22(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809189

ABSTRACT

Plant specialized metabolites (SMs) play an important role in the interaction with the environment and are part of the plant defense response. These natural products are volatile, semi-volatile and non-volatile compounds produced from common building blocks deriving from primary metabolic pathways and rapidly evolved to allow a better adaptation of plants to environmental cues. Specialized metabolites include terpenes, flavonoids, alkaloids, glucosinolates, tannins, resins, etc. that can be used as phytochemicals, food additives, flavoring agents and pharmaceutical compounds. This review will be focused on Mediterranean crop plants as a source of SMs, with a special attention on the strategies that can be used to modulate their production, including abiotic stresses, interaction with beneficial soil microorganisms and novel genetic approaches.


Subject(s)
Biological Products/metabolism , Crops, Agricultural/metabolism , Disease Resistance/genetics , Secondary Metabolism/genetics , Crops, Agricultural/growth & development , Flavonoids/metabolism , Humans , Mediterranean Region , Metabolic Networks and Pathways/genetics , Phytochemicals/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Stress, Physiological/drug effects , Terpenes/metabolism
7.
DNA Res ; 25(2): 149-160, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29149280

ABSTRACT

Tomato is a high value crop and the primary model for fleshy fruit development and ripening. Breeding priorities include increased fruit quality, shelf life and tolerance to stresses. To contribute towards this goal, we re-sequenced the genomes of Corbarino (COR) and Lucariello (LUC) landraces, which both possess the traits of plant adaptation to water deficit, prolonged fruit shelf-life and good fruit quality. Through the newly developed pipeline Reconstructor, we generated the genome sequences of COR and LUC using datasets of 65.8 M and 56.4 M of 30-150 bp paired-end reads, respectively. New contigs including reads that could not be mapped to the tomato reference genome were assembled, and a total of 43, 054 and 44, 579 gene loci were annotated in COR and LUC. Both genomes showed novel regions with similarity to Solanum pimpinellifolium and Solanum pennellii. In addition to small deletions and insertions, 2, 000 and 1, 700 single nucleotide polymorphisms (SNPs) could exert potentially disruptive effects on 1, 371 and 1, 201 genes in COR and LUC, respectively. A detailed survey of the SNPs occurring in fruit quality, shelf life and stress tolerance related-genes identified several candidates of potential relevance. Variations in ethylene response components may concur in determining peculiar phenotypes of COR and LUC.


Subject(s)
Fruit/genetics , Genome, Plant , Polymorphism, Genetic , Solanum lycopersicum/genetics , Stress, Physiological/genetics , Whole Genome Sequencing , Base Sequence , Genes, Plant , Genomics
8.
J Exp Bot ; 68(3): 429-442, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28040800

ABSTRACT

Volatile organic compounds (VOCs) are major determinants of fruit flavor, a primary objective in tomato breeding. A recombinant inbred line (RIL) population consisting of 169 lines derived from a cross between Solanum lycopersicum and a red-fruited wild tomato species Solanum pimpinellifolium accession (SP) was characterized for VOCs in three different seasons. Correlation and hierarchical cluster analyses were performed on the 52 VOCs identified, providing a tool for the putative assignation of individual compounds to metabolic pathways. Quantitative trait locus (QTL) analysis, based on a genetic linkage map comprising 297 single nucleotide polymorphisms (SNPs), revealed 102 QTLs (75% not described previously) corresponding to 39 different VOCs. The SP alleles exerted a positive effect on most of the underlying apocarotenoid volatile QTLs-regarded as desirable for liking tomato-indicating that alleles inherited from SP are a valuable resource for flavor breeding. An introgression line (IL) population developed from the same parental genotypes provided 12 ILs carrying a single SP introgression and covering 85 VOC QTLs, which were characterized at three locations. The results showed that almost half of the QTLs previously identified in the RILs maintained their effect in an IL form, reinforcing the value of these QTLs for flavor/aroma breeding in cultivated tomato.


Subject(s)
Genes, Plant , Quantitative Trait Loci , Solanum/genetics , Solanum/metabolism , Volatile Organic Compounds/metabolism , Fruit/chemistry , Fruit/metabolism , Hybridization, Genetic , Volatile Organic Compounds/chemistry
9.
Trends Plant Sci ; 18(10): 536-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24029406

ABSTRACT

Quantitative trait locus (QTL) genetics retains an important role in the study of biological and agronomic processes; however, its genetic resolution is often comparatively low. Community-based strategies are thus required to address this issue. Here we detail such a strategy wherein the widely used Solanum pennellii introgression lines (ILs) in the genetic background of the cultivated tomato (Solanum lycopersicum) are broken up into molecular marker-defined sublines as a community resource for map-based cloning.


Subject(s)
Inbreeding , Recombination, Genetic , Solanum/genetics , Chromosomes, Plant/genetics , Genome-Wide Association Study
10.
Nat Prod Commun ; 6(11): 1665-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22224284

ABSTRACT

Several different classes of secondary metabolites, including flavonoids, triterpenoid saponins and quinic acid derivatives, are found in Aster spp. (Fam. Asteraceae). Several Aster compounds revealed biological as well as pharmacological activities. In this work, a phytochemical investigation of A. caucasicus evidenced the presence of quinic acid derivatives, as well as the absence of triterpene saponins. To combine in one species the production of different phytochemicals, including triterpenes, an Agrobacterium-mediated transformation of A. caucasicus was set up to introduce A. sedifolius beta-amyrin synthase (AsOXA1)-encoding gene under the control of the constitutive promoter CaMV35S. The quali-quantitative analysis of transgenic calli with ectopic expression of AsOXA1 showed, in one sample, a negligible amount of triterpene saponins combined with higher amount of quinic acid derivatives as compared with the wild type callus.


Subject(s)
Aster Plant/chemistry , Intramolecular Transferases/genetics , Quinic Acid/analogs & derivatives , Agrobacterium tumefaciens , Aster Plant/genetics , Aster Plant/metabolism , Gene Transfer Techniques , Intramolecular Transferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/enzymology , Quinic Acid/isolation & purification
11.
J Food Sci ; 75(1): S55-67, 2010.
Article in English | MEDLINE | ID: mdl-20492203

ABSTRACT

Sensory properties are important elements to evaluate the qualities of vegetable products and are also determinant factors in purchasing decision. Here we report the Italian results of a preference mapping study conducted within a larger European project with the aim of describing the preferences of European consumers in regard to the diversity of traditional and modern tomato varieties, available on the market. This study has allowed the assessment of fruit quality at 3 levels: objective description of sensory properties, consumer preference tests, and physicochemical measurements. A set of 16 tomato cultivars, with different fruit sizes and shapes, was described and classified according to 18 sensory attributes including flavor, appearance, and texture characteristics. The same cultivars were evaluated by 179 consumers in a "preference mapping" experiment with the goal of identifying the preferred varieties and the reasons for the choice. The consumer data are referred to hedonic ratings (aspect liking and overall liking), familiarity for the analyzed cultivars, and individual features collected by a questionnaire. A hierarchical analysis of the clusters allowed to distinguish, within the sampled Italian consumers, 4 segments with different preferences which represented 19%, 25%, 41%, and 15% of the population, respectively. A partial least square regression model allowed the identification of the sensory attributes that best described consumer cluster preferences for tomato cultivars. Both texture and flavor descriptors were important drivers of consumer preferences, but the relevance (predictive value) of individual descriptors to model tomato liking was different for each consumer segment. Information on demographic and behavioral characteristics, usage habits, and factors relevant for purchasing were also provided on the 4 groups of consumers.


Subject(s)
Consumer Behavior/statistics & numerical data , Solanum lycopersicum , Taste , France , Humans , Italy , Solanum lycopersicum/classification , Solanum lycopersicum/growth & development , Mastication , Netherlands , Size Perception , Smell , Taste Perception , Touch
12.
Plant Biotechnol J ; 7(2): 172-82, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19055609

ABSTRACT

Triterpene saponins are a group of bioactive compounds abundant in the genus Medicago, and have been studied extensively for their biological and pharmacological properties. In this article, we evaluated the effects of the ectopic expression of AsOXA1 cDNA from Aster sedifolius on the production of triterpene saponins in barrel medic (Medicago truncatula Gaertn.). AsOXA1 cDNA encodes beta-amyrin synthase, a key enzyme involved in triterpene saponin biosynthesis. One of the four transgenic lines expressing AsOXA1 accumulated significantly larger amounts of some triterpenic compounds in leaf and root than did control plants. In particular, the leaf exhibited significantly higher levels of bayogenin, medicagenic acid and zanhic acid. The amounts of medicagenic acid and zanhic acid, which represent the core of the M. truncatula leaf saponins, were 1.7 and 2.1 times higher, respectively, than the amounts extracted from the control line. In root, the production of bayogenin, hederagenin, soyasapogenol E and 2beta-hydroxyoleanolic acid was increased significantly. The increase in the total amounts of triterpenic compounds observed in the leaves of transgenic lines correlated with the AsOXA1 expression level. Interestingly, the plants expressing AsOXA1 showed, under different growth conditions, improved nodulation when compared with the control line. Nodulation enhancement was also accompanied by a significant change in the soyasapogenol B content. Our results indicate that the ectopic expression of AsOXA1 in barrel medic leads to a greater accumulation of triterpene saponins and enhanced root nodulation.


Subject(s)
Intramolecular Transferases/metabolism , Medicago truncatula/enzymology , Plant Proteins/metabolism , Saponins/biosynthesis , Triterpenes/metabolism , Aster Plant/enzymology , Aster Plant/genetics , Gene Expression , Intramolecular Transferases/genetics , Medicago truncatula/genetics , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/biosynthesis , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Proteins/genetics , Plant Roots/enzymology , Plant Roots/genetics , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , RNA, Plant/genetics
13.
Bioorg Med Chem ; 12(18): 4909-15, 2004 Sep 15.
Article in English | MEDLINE | ID: mdl-15336270

ABSTRACT

A phytochemical analysis of Aster sedifolius has led to the isolation of three novel triterpenoid saponins, based on an oleane-type skeleton and named astersedifolioside A (1), B (2) and C (3). On the basis of chemical, and 2D NMR and mass spectrometry data, the structures of the new compounds were elucidated as 3-O-[alpha-L-rhamnopyranosyl (1-->2)-beta-D-glucopyranosyl] echinocystic acid 28-[O-alpha-L-rhamnopyranosyl (1-->2)-alpha-L-arabinopyranoside] (1), 3-O-[alpha-L-rhamnopyranosyl (1-->2)-beta-D-glucopyranosyl] echinocystic acid 28-[O-beta-D-xylopyranosyl (1-->4)-O-alpha-L-rhamnopyranosyl (1-->2)-alpha-L-arabinopyranoside] (2) and 3-O-[alpha-L-rhamnopyranosyl (1-->2)-beta-D-glucopyranosyl (1-->2)-beta-D-glucopyranosyl] echinocystic acid 28-[O-beta-D-xylopyranosyl (1-->4)-O-alpha-L-rhamnopyranosyl (1-->2)-alpha-L-arabinopyranoside] (3). The isolated compounds showed antiproliferative effect in KiMol, a transformed thyroid cell line.


Subject(s)
Asteraceae , Growth Inhibitors/pharmacology , Oleanolic Acid/pharmacology , Saponins/pharmacology , Animals , Cell Line , Growth Inhibitors/chemistry , Growth Inhibitors/isolation & purification , Oleanolic Acid/chemistry , Oleanolic Acid/isolation & purification , Plant Components, Aerial , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Rats , Saponins/chemistry , Saponins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...