Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 79(4): 985-997, 2020 May.
Article in English | MEDLINE | ID: mdl-31802185

ABSTRACT

A multicellular host and its microbial communities are recognized as a metaorganism-a composite unit of evolution. Microbial communities have a variety of positive and negative effects on the host life history, ecology, and evolution. This study used high-throughput amplicon sequencing to characterize the complete skin and gut microbial communities, including both bacteria and fungi, of a terrestrial salamander, Plethodon glutinosus (Family Plethodontidae). We assessed salamander populations, representing nine mitochondrial haplotypes ('clades'), for differences in microbial assemblages across 13 geographic locations in the Southeastern United States. We hypothesized that microbial assemblages were structured by both host factors and geographic distance. We found a strong correlation between all microbial assemblages at close geographic distances, whereas, as spatial distance increases, the patterns became increasingly discriminate. Network analyses revealed that gut-bacterial communities have the highest degree of connectedness across geographic space. Host salamander clade was explanatory of skin-bacterial and gut-fungal assemblages but not gut-bacterial assemblages, unless the latter were analyzed within a phylogenetic context. We also inferred the function of gut-fungal assemblages to understand how an understudied component of the gut microbiome may influence salamander life history. We concluded that dispersal limitation may in part describe patterns in microbial assemblages across space and also that the salamander host may select for skin and gut communities that are maintained over time in closely related salamander populations.


Subject(s)
Bacterial Physiological Phenomena , Fungi/physiology , Gastrointestinal Tract/microbiology , Microbiota , Skin/microbiology , Urodela/microbiology , Animal Distribution , Animals , Bacteria/isolation & purification , Fungi/isolation & purification , Gastrointestinal Microbiome , Mycobiome , Southeastern United States , Spatial Analysis , Tennessee
2.
Zootaxa ; 4609(3): zootaxa.4609.3.2, 2019 May 24.
Article in English | MEDLINE | ID: mdl-31717092

ABSTRACT

Woodland salamanders of the genus Plethodon are characterized by strong ecological and morphological conservatism. One assemblage, the Wehrle's salamander (Plethodon wehrlei Fowler Dunn) species group, is distributed from New York to Tennessee, USA, and includes several morphological variants, four of which are sufficiently distinct to have been recognized as species in the past. For many years after two of these species were placed in synonymy, only P. wehrlei and P. punctatus Highton were recognized. A recent phylogeographic study using mitochondrial DNA and nuclear DNA uncovered considerable genetic diversity within the group and conservatively resurrected one of the previously synonymized forms (P. dixi Pope Fowler). However, their analysis could not resolve all relationships among remaining populations of P. wehrlei, leaving the taxon paraphyletic. We re-evaluated the evolutionary history of this group using genomic data, recovered strong support for at least five distinct clades, and corroborated previously reported relationships. We also collected morphological data and demonstrated morphological distinctiveness for four of the five clades that we herein recognize as species. We resurrect the synonymized name P. jacksoni Newman to represent the southern clades of P. wehrlei in southwestern Virginia and North Carolina exclusive of P. dixi. In addition, we describe a yellow-spotted form of P. wehrlei endemic to the Cumberland Plateau as a new species. Although our proposed changes rectify the paraphyly of P. wehrlei, our sampling was not sufficient to resolve potential taxonomic issues remaining within the species herein recognized as P. jacksoni.


Subject(s)
DNA, Mitochondrial , Urodela , Animals , Genomics , New York , North Carolina , Phylogeny , Sequence Analysis, DNA , Tennessee , Virginia
SELECTION OF CITATIONS
SEARCH DETAIL
...