Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Mol Ther ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38959896

ABSTRACT

Bispecific antibodies are an important tool for the management and treatment of acute leukemias. As a next step toward clinical translation of engineered plasma cells, we describe approaches for secretion of bispecific antibodies by human plasma cells. We show that human plasma cells expressing either fragment crystallizable domain-deficient anti-CD19 × anti-CD3 (blinatumomab) or anti-CD33 × anti-CD3 bispecific antibodies mediate T cell activation and direct T cell killing of B acute lymphoblastic leukemia or acute myeloid leukemia cell lines in vitro. We demonstrate that knockout of the self-expressed antigen, CD19, boosts anti-CD19-bispecific secretion by plasma cells and prevents self-targeting. Plasma cells secreting anti-CD19-bispecific antibodies elicited in vivo control of acute lymphoblastic leukemia patient-derived xenografts in immunodeficient mice co-engrafted with autologous T cells. In these studies, we found that leukemic control elicited by engineered plasma cells was similar to CD19-targeted chimeric antigen receptor-expressing T cells. Finally, the steady-state concentration of anti-CD19 bispecifics in serum 1 month after cell delivery and tumor eradication was comparable with that observed in patients treated with a steady-state infusion of blinatumomab. These findings support further development of ePCs for use as a durable delivery system for the treatment of acute leukemias, and potentially other cancers.

2.
Nat Commun ; 13(1): 6110, 2022 10 16.
Article in English | MEDLINE | ID: mdl-36245034

ABSTRACT

Due to their unique longevity and capacity to secrete high levels of protein, plasma B cells have the potential to be used as a cell therapy for protein replacement. Here, we show that ex vivo engineered human plasma cells exhibit single-cell RNA profiles, scanning electron micrograph ultrastructural features, and in vivo homing capacity of long-lived plasma cells. After transferring human plasma cells to immunodeficient mice in the presence of the human cytokines BAFF and IL-6, we observe increases in retention of plasma cells in the bone marrow, with engraftment exceeding a year. The most profound in vivo effects of human IL-6 are observed within 20 days of transfer and could be explained by decreased apoptosis in newly differentiated plasma cells. Collectively, these results show that ex vivo engineered and differentiated human plasma cells have the potential for long-lived in vivo protein secretion, which can be modeled in small animals.


Subject(s)
Hematopoietic Stem Cell Transplantation , Plasma Cells , Animals , Blood Proteins , Cytokines/metabolism , Humans , Interleukin-6 , Mice , Mice, SCID , Plasma Cells/metabolism , RNA
3.
Leukemia ; 36(1): 42-57, 2022 01.
Article in English | MEDLINE | ID: mdl-34193976

ABSTRACT

Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a high-risk subtype of B-ALL often associated with genetic variants that alter cytokine receptor signaling, including mutations in the interleukin-7 receptor (IL7R). To investigate whether IL7R variants are leukemia-initiating, we built mouse models expressing activated Il7r (aIL7R). B-cell intrinsic aIL7R mice developed spontaneous B-ALL, demonstrating sufficiency of Il7r activating mutations in leukemogenesis. Concomitant introduction of a knock-out allele in the associated adapter protein Lnk (encoded by Sh2b3) or a dominant-negative variant of the transcription factor Ikaros (Ikzf1) increased disease penetrance. The resulting murine leukemias displayed monoclonality and recurrent somatic Kras mutations and efficiently engrafted into immunocompetent mice. Phosphoproteomic analyses of aIL7R leukemic cells revealed constitutive Stat5 signaling and B cell receptor (BCR)-like signaling despite the absence of surface pre-BCR. Finally, in vitro treatment of aIL7R leukemic B-cells with Jak, mTOR, or Syk inhibitors blocked growth, confirming that each pathway is active in this mouse model of IL7R-driven B-ALL.


Subject(s)
Gene Expression Regulation, Leukemic , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptors, Interleukin-7/metabolism , Animals , Apoptosis , Cell Proliferation , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/etiology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Interleukin-7/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Biomaterials ; 272: 120764, 2021 05.
Article in English | MEDLINE | ID: mdl-33798964

ABSTRACT

Cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) offer tremendous potential when used to engineer human tissues for drug screening and disease modeling; however, phenotypic immaturity reduces assay reliability when translating in vitro results to clinical studies. To address this, we have developed hybrid hydrogels comprised of decellularized porcine myocardial extracellular matrix (dECM) and reduced graphene oxide (rGO) to provide a more instructive microenvironment for proper cell and tissue development. A tissue-specific protein profile was preserved post-decellularization, and through the modulation of rGO content and degree of reduction, the mechanical and electrical properties of the hydrogels could be tuned. Engineered heart tissues (EHTs) generated using dECM-rGO hydrogel scaffolds and hiPSC-derived cardiomyocytes exhibited significantly increased twitch forces and had increased expression of genes that regulate contractile function. Improvements in various aspects of electrophysiological function, such as calcium-handling, action potential duration, and conduction velocity, were also induced by the hybrid biomaterial. dECM-rGO hydrogels could also be used as a bioink to print cardiac tissues in a high-throughput manner, and these tissues were utilized to assess the proarrhythmic potential of cisapride. Action potential prolongation and beat interval irregularities was observed in dECM-rGO tissues at clinical doses of cisapride, indicating that the enhanced electrophysiological function of these tissues corresponded well with a capability to produce physiologically relevant drug responses.


Subject(s)
Hydrogels , Induced Pluripotent Stem Cells , Animals , Extracellular Matrix , Humans , Reproducibility of Results , Swine , Tissue Engineering , Tissue Scaffolds
5.
Am J Hum Genet ; 107(6): 1029-1043, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33202260

ABSTRACT

Genetic testing has increased the number of variants identified in disease genes, but the diagnostic utility is limited by lack of understanding variant function. CARD11 encodes an adaptor protein that expresses dominant-negative and gain-of-function variants associated with distinct immunodeficiencies. Here, we used a "cloning-free" saturation genome editing approach in a diploid cell line to simultaneously score 2,542 variants for decreased or increased function in the region of CARD11 associated with immunodeficiency. We also described an exon-skipping mechanism for CARD11 dominant-negative activity. The classification of reported clinical variants was sensitive (94.6%) and specific (88.9%), which rendered the data immediately useful for interpretation of seven coding and splicing variants implicated in immunodeficiency found in our clinic. This approach is generalizable for variant interpretation in many other clinically actionable genes, in any relevant cell type.


Subject(s)
CARD Signaling Adaptor Proteins/genetics , Genetic Variation , Guanylate Cyclase/genetics , Immunologic Deficiency Syndromes/genetics , Adenine/analogs & derivatives , Adenine/pharmacology , B-Cell CLL-Lymphoma 10 Protein/genetics , B-Lymphocytes/cytology , Cell Line , Diploidy , Exons , Genes, Dominant , Humans , Jurkat Cells , Lymphoma/genetics , NF-kappa B p50 Subunit/genetics , Piperidines/pharmacology , Polymorphism, Single Nucleotide , Primary Immunodeficiency Diseases/genetics , Sensitivity and Specificity
6.
Cancers (Basel) ; 11(9)2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31540485

ABSTRACT

Diffuse invasion into adjacent brain matter by glioblastoma (GBM) is largely responsible for their dismal prognosis. Previously, we showed that the TWIST1 (TW) bHLH transcription factor and its regulated gene periostin (POSTN) promote invasive phenotypes of GBM cells. Since TW functional effects are regulated by phosphorylation and dimerization, we investigated how phosphorylation of serine 68 in TW regulates TW dimerization, POSTN expression, and invasion in glioma cells. Compared with wild-type TW, the hypophosphorylation mutant, TW(S68A), impaired TW heterodimerization with the E12 bHLH transcription factor and cell invasion in vitro but had no effect on TW homodimerization. Overexpression of TW:E12 forced dimerization constructs (FDCs) increased glioma cell invasion and upregulated pro-invasive proteins, including POSTN, in concert with cytoskeletal reorganization. By contrast, TW:TW homodimer FDCs inhibited POSTN expression and cell invasion in vitro. Further, phosphorylation of analogous PXSP phosphorylation sites in TW:E12 FDCs (TW S68 and E12 S139) coordinately regulated POSTN and PDGFRa mRNA expression. These results suggested that TW regulates pro-invasive phenotypes in part through coordinated phosphorylation events in TW and E12 that promote heterodimer formation and regulate downstream targets. This new mechanistic understanding provides potential therapeutic strategies to inhibit TW-POSTN signaling in GBM and other cancers.

7.
Cell Rep ; 24(13): 3607-3618, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30257219

ABSTRACT

We present a method for automatically discovering signaling pathways from time-resolved phosphoproteomic data. The Temporal Pathway Synthesizer (TPS) algorithm uses constraint-solving techniques first developed in the context of formal verification to explore paths in an interaction network. It systematically eliminates all candidate structures for a signaling pathway where a protein is activated or inactivated before its upstream regulators. The algorithm can model more than one hundred thousand dynamic phosphosites and can discover pathway members that are not differentially phosphorylated. By analyzing temporal data, TPS defines signaling cascades without needing to experimentally perturb individual proteins. It recovers known pathways and proposes pathway connections when applied to the human epidermal growth factor and yeast osmotic stress responses. Independent kinase mutant studies validate predicted substrates in the TPS osmotic stress pathway.


Subject(s)
Protein Processing, Post-Translational , Proteome/metabolism , Proteomics/methods , Signal Transduction , Software , Cell Line , Humans , Phosphorylation
8.
PLoS Pathog ; 13(3): e1006256, 2017 03.
Article in English | MEDLINE | ID: mdl-28257516

ABSTRACT

Kaposi's Sarcoma associated Herpesvirus (KSHV), an oncogenic, human gamma-herpesvirus, is the etiological agent of Kaposi's Sarcoma the most common tumor of AIDS patients world-wide. KSHV is predominantly latent in the main KS tumor cell, the spindle cell, a cell of endothelial origin. KSHV modulates numerous host cell-signaling pathways to activate endothelial cells including major metabolic pathways involved in lipid metabolism. To identify the underlying cellular mechanisms of KSHV alteration of host signaling and endothelial cell activation, we identified changes in the host proteome, phosphoproteome and transcriptome landscape following KSHV infection of endothelial cells. A Steiner forest algorithm was used to integrate the global data sets and, together with transcriptome based predicted transcription factor activity, cellular networks altered by latent KSHV were predicted. Several interesting pathways were identified, including peroxisome biogenesis. To validate the predictions, we showed that KSHV latent infection increases the number of peroxisomes per cell. Additionally, proteins involved in peroxisomal lipid metabolism of very long chain fatty acids, including ABCD3 and ACOX1, are required for the survival of latently infected cells. In summary, novel cellular pathways altered during herpesvirus latency that could not be predicted by a single systems biology platform, were identified by integrated proteomics and transcriptomics data analysis and when correlated with our metabolomics data revealed that peroxisome lipid metabolism is essential for KSHV latent infection of endothelial cells.


Subject(s)
Herpesvirus 8, Human/metabolism , Host-Parasite Interactions/physiology , Lipid Metabolism/physiology , Peroxisomes/metabolism , Virus Activation/physiology , Virus Latency/physiology , Cell Separation , Cells, Cultured , Endothelial Cells/virology , Flow Cytometry , Humans , Mass Spectrometry , Microscopy, Confocal , RNA, Small Interfering , Sarcoma, Kaposi/virology , Systems Biology , Transfection
9.
Nat Chem Biol ; 13(1): 119-126, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27870838

ABSTRACT

Synthetic protein switches controlled with user-defined inputs are powerful tools for studying and controlling dynamic cellular processes. To date, these approaches have relied primarily on intermolecular regulation. Here we report a computationally guided framework for engineering intramolecular regulation of protein function. We utilize this framework to develop chemically inducible activator of RAS (CIAR), a single-component RAS rheostat that directly activates endogenous RAS in response to a small molecule. Using CIAR, we show that direct RAS activation elicits markedly different RAS-ERK signaling dynamics from growth factor stimulation, and that these dynamics differ among cell types. We also found that the clinically approved RAF inhibitor vemurafenib potently primes cells to respond to direct wild-type RAS activation. These results demonstrate the utility of CIAR for quantitatively interrogating RAS signaling. Finally, we demonstrate the general utility of our approach in design of intramolecularly regulated protein tools by applying it to the Rho family of guanine nucleotide exchange factors.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System , Protein Engineering , ras Proteins/chemistry , ras Proteins/metabolism , Cell Line , Humans , Models, Molecular
10.
J Biol Chem ; 291(35): 18210-21, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27382054

ABSTRACT

The α1D-adrenergic receptor (ADRA1D) is a key regulator of cardiovascular, prostate, and central nervous system functions. This clinically relevant G protein-coupled receptor has proven difficult to study, as it must form an obligate modular homodimer containing the PDZ proteins scribble and syntrophin or become retained in the endoplasmic reticulum as non-functional protein. We previously determined that targeted removal of the N-terminal (NT) 79 amino acids facilitates ADRA1D plasma membrane expression and agonist-stimulated functional responses. However, whether such an event occurs in physiological contexts was unknown. Herein, we report the ADRA1D is subjected to innate NT processing in cultured human cells. SNAP near-infrared imaging and tandem-affinity purification revealed the ADRA1D is expressed as both full-length and NT truncated forms in multiple human cell lines. Serial truncation mapping identified the cleavage site as Leu(90)/Val(91) in the 95-amino acid ADRA1D NT domain, suggesting human cells express a Δ1-91 ADRA1D species. Tandem-affinity purification MS/MS and co-immunoprecipitation analysis indicate NT processing of ADRA1D is not required to form scribble-syntrophin macromolecular complexes. Yet, label-free dynamic mass redistribution signaling assays demonstrate that Δ1-91 ADRA1D agonist responses were greater than WT ADRA1D. Mutagenesis of the cleavage site nullified the processing event, resulting in ADRA1D agonist responses less than the WT receptor. Thus, we propose that processing of the ADRA1D NT domain is a physiological mechanism employed by cells to generate a functional ADRA1D isoform with optimal pharmacodynamic properties.


Subject(s)
Neoplasm Proteins/metabolism , Proteolysis , Receptors, Adrenergic, alpha-1/metabolism , Hep G2 Cells , Humans , MCF-7 Cells , Neoplasm Proteins/genetics , PDZ Domains , Receptors, Adrenergic, alpha-1/genetics
11.
Pharmacol Res ; 105: 13-21, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26773201

ABSTRACT

G protein-coupled receptors (GPCRs) are essential membrane proteins that facilitate cell-to-cell communication and co-ordinate physiological processes. At least 30 human GPCRs contain a Type I PSD-95/DLG/Zo-1 (PDZ) ligand in their distal C-terminal domain; this four amino acid motif of X-[S/T]-X-[φ] sequence facilitates interactions with PDZ domain-containing proteins. Because PDZ protein interactions have profound effects on GPCR ligand pharmacology, cellular localization, signal-transduction effector coupling and duration of activity, we analyzed the importance of Type I PDZ ligands for the function of 23 full-length and PDZ-ligand truncated (ΔPDZ) human GPCRs in cultured human cells. SNAP-epitope tag polyacrylamide gel electrophoresis revealed most Type I PDZ GPCRs exist as both monomers and multimers; removal of the PDZ ligand played minimal role in multimer formation. Additionally, SNAP-cell surface staining indicated removal of the PDZ ligand had minimal effects on plasma membrane localization for most GPCRs examined. Label-free dynamic mass redistribution functional responses, however, revealed diverging effects of the PDZ ligand. While no clear trend was observed across all GPCRs tested or even within receptor families, a subset of GPCRs displayed diminished agonist efficacy in the absence of a PDZ ligand (i.e. HT2RB, ADRB1), whereas others demonstrated enhanced agonist efficacies (i.e. LPAR2, SSTR5). These results demonstrate the utility of label-free functional assays to tease apart the contributions of conserved protein interaction domains for GPCR signal-transduction coupling in cultured cells.


Subject(s)
Drug Discovery , Receptors, G-Protein-Coupled/metabolism , Drug Discovery/methods , HEK293 Cells , Humans , Ligands , PDZ Domains , Protein Interaction Domains and Motifs , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/analysis , Signal Transduction
12.
Cell Discov ; 12015.
Article in English | MEDLINE | ID: mdl-26617989

ABSTRACT

Recent advances in proteomic technology reveal G-protein-coupled receptors (GPCRs) are organized as large, macromolecular protein complexes in cell membranes, adding a new layer of intricacy to GPCR signaling. We previously reported the α1D-adrenergic receptor (ADRA1D)-a key regulator of cardiovascular, urinary and CNS function-binds the syntrophin family of PDZ domain proteins (SNTA, SNTB1, and SNTB2) through a C-terminal PDZ ligand interaction, ensuring receptor plasma membrane localization and G-protein coupling. To assess the uniqueness of this novel GPCR complex, 23 human GPCRs containing Type I PDZ ligands were subjected to TAP/MS proteomic analysis. Syntrophins did not interact with any other GPCRs. Unexpectedly, a second PDZ domain protein, scribble (SCRIB), was detected in ADRA1D complexes. Biochemical, proteomic, and dynamic mass redistribution analyses indicate syntrophins and SCRIB compete for the PDZ ligand, simultaneously exist within an ADRA1D multimer, and impart divergent pharmacological properties to the complex. Our results reveal an unprecedented modular dimeric architecture for the ADRA1D in the cell membrane, providing unexpected opportunities for fine-tuning receptor function through novel protein interactions in vivo, and for intervening in signal transduction with small molecules that can stabilize or disrupt unique GPCR:PDZ protein interfaces.

13.
Mol Cell ; 50(3): 444-56, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23583077

ABSTRACT

Lysine methylation of histone proteins regulates chromatin dynamics and plays important roles in diverse physiological and pathological processes. However, beyond histone proteins, the proteome-wide extent of lysine methylation remains largely unknown. We have engineered the naturally occurring MBT domain repeats of L3MBTL1 to serve as a universal affinity reagent for detecting, enriching, and identifying proteins carrying a mono- or dimethylated lysine. The domain is broadly specific for methylated lysine ("pan-specific") and can be applied to any biological system. We have used our approach to demonstrate that SIRT1 is a substrate of the methyltransferase G9a both in vitro and in cells, to perform proteome-wide detection and enrichment of methylated proteins, and to identify candidate in-cell substrates of G9a and the related methyltransferase GLP. Together, our results demonstrate a powerful new approach for global and quantitative analysis of methylated lysine, and they represent the first systems biology understanding of lysine methylation.


Subject(s)
Lysine/genetics , Lysine/metabolism , Proteome/genetics , Proteome/metabolism , Animals , Cell Line , HEK293 Cells , Humans , Insecta , Methylation , Protein Structure, Tertiary , Proteomics/methods , Sf9 Cells , Sirtuin 1/genetics , Sirtuin 1/metabolism
14.
PLoS One ; 7(12): e50457, 2012.
Article in English | MEDLINE | ID: mdl-23227175

ABSTRACT

The Wnt/ß-catenin signaling pathway controls important cellular events during development and often contributes to disease when dysregulated. Using high throughput screening we have identified a new small molecule inhibitor of Wnt/ß-catenin signaling, WIKI4. WIKI4 inhibits expression of ß-catenin target genes and cellular responses to Wnt/ß-catenin signaling in cancer cell lines as well as in human embryonic stem cells. Furthermore, we demonstrate that WIKI4 mediates its effects on Wnt/ß-catenin signaling by inhibiting the enzymatic activity of TNKS2, a regulator of AXIN ubiquitylation and degradation. While TNKS has previously been shown to be the target of small molecule inhibitors of Wnt/ß-catenin signaling, WIKI4 is structurally distinct from previously identified TNKS inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Naphthalimides/pharmacology , Signal Transduction/drug effects , Tankyrases/antagonists & inhibitors , Triazoles/pharmacology , Wnt Proteins/antagonists & inhibitors , beta Catenin/antagonists & inhibitors , Cell Line , High-Throughput Screening Assays , Humans , Ubiquitination , Wnt Proteins/metabolism , beta Catenin/metabolism
15.
J Biol Chem ; 287(9): 6539-50, 2012 Feb 24.
Article in English | MEDLINE | ID: mdl-22215675

ABSTRACT

WTX is a tumor suppressor protein that is lost or mutated in up to 30% of cases of Wilms tumor. Among its known functions, WTX interacts with the ß-transducin repeat containing family of ubiquitin ligase adaptors and promotes the ubiquitination and degradation of the transcription factor ß-catenin, a key control point in the WNT/ß-catenin signaling pathway. Here, we report that WTX interacts with a second ubiquitin ligase adaptor, KEAP1, which functions to regulate the ubiquitination of the transcription factor NRF2, a key control point in the antioxidant response. Surprisingly, we find that unlike its ability to promote the ubiquitination of ß-catenin, WTX inhibits the ubiquitination of NRF2. WTX and NRF2 compete for binding to KEAP1, and thus loss of WTX leads to rapid ubiquitination and degradation of NRF2 and a reduced response to cytotoxic insult. These results expand our understanding of the molecular mechanisms of WTX and reveal a novel regulatory mechanism governing the antioxidant response.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Antioxidants/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Tumor Suppressor Proteins/metabolism , Wilms Tumor/metabolism , Adaptor Proteins, Signal Transducing/genetics , Binding, Competitive/physiology , Chromosomes, Human, X/genetics , HEK293 Cells , Humans , Kelch-Like ECH-Associated Protein 1 , Phosphorylation/physiology , RNA, Small Interfering/genetics , Serine/metabolism , Transcriptional Activation/physiology , Tumor Suppressor Proteins/genetics , Ubiquitination/physiology , Wilms Tumor/genetics , beta-Transducin Repeat-Containing Proteins/metabolism
16.
Chem Biol ; 17(11): 1177-82, 2010 Nov 24.
Article in English | MEDLINE | ID: mdl-21095567

ABSTRACT

To identify new protein and pharmacological regulators of Wnt/ß-catenin signaling, we used a cell-based reporter assay to screen a collection of 1857 human-experienced compounds for their ability to enhance activation of the ß-catenin reporter by a low concentration of WNT3A. This identified 44 unique compounds, including the FDA-approved drug riluzole, which is presently in clinical trials for treating melanoma. We found that treating melanoma cells with riluzole in vitro enhances the ability of WNT3A to regulate gene expression, to promote pigmentation, and to decrease cell proliferation. Furthermore riluzole, like WNT3A, decreases metastases in a mouse melanoma model. Interestingly, siRNAs targeting the metabotropic glutamate receptor, GRM1, a reported indirect target of riluzole, enhance ß-catenin signaling. The unexpected regulation of ß-catenin signaling by both riluzole and GRM1 has implications for the future uses of this drug.


Subject(s)
Antineoplastic Agents/therapeutic use , Melanoma, Experimental/metabolism , Riluzole/therapeutic use , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Cell Proliferation , Gene Expression Regulation , Genes, Reporter , Melanoma, Experimental/drug therapy , Mice , RNA Interference , RNA, Small Interfering , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Signal Transduction , Skin Pigmentation , Wnt3 Protein , Wnt3A Protein
17.
Sci Signal ; 2(72): ra25, 2009 May 26.
Article in English | MEDLINE | ID: mdl-19471023

ABSTRACT

Wnts are secreted ligands that activate several receptor-mediated signal transduction cascades. Homeostatic Wnt signaling through beta-catenin is required in adults, because either elevation or attenuation of beta-catenin function has been linked to diverse diseases. To contribute to the identification of both protein and pharmacological regulators of this pathway, we describe a combinatorial screen that merged data from a high-throughput screen of known bioactive compounds with an independent focused small interfering RNA screen. Each screen independently revealed Bruton's tyrosine kinase (BTK) as an inhibitor of Wnt-beta-catenin signaling. Loss of BTK function in human colorectal cancer cells, human B cells, zebrafish embryos, and cells derived from X-linked agammaglobulinemia patients with a mutant BTK gene resulted in elevated Wnt-beta-catenin signaling, confirming that BTK acts as a negative regulator of this pathway. From affinity purification-mass spectrometry and biochemical binding studies, we found that BTK directly interacts with a nuclear component of Wnt-beta-catenin signaling, CDC73. Further, we show that BTK increased the abundance of CDC73 in the absence of stimulation and that CDC73 acted as a repressor of beta-catenin-mediated transcription in human colorectal cancer cells and B cells.


Subject(s)
Protein-Tyrosine Kinases/metabolism , Signal Transduction , Wnt Proteins/metabolism , beta Catenin/metabolism , Agammaglobulinaemia Tyrosine Kinase , Animals , Cell Line , Chromatography, Affinity , Humans , Mass Spectrometry , Protein-Tyrosine Kinases/isolation & purification
18.
Science ; 316(5827): 1043-6, 2007 May 18.
Article in English | MEDLINE | ID: mdl-17510365

ABSTRACT

Aberrant WNT signal transduction is involved in many diseases. In colorectal cancer and melanoma, mutational disruption of proteins involved in the degradation of beta-catenin, the key effector of the WNT signaling pathway, results in stabilization of beta-catenin and, in turn, activation of transcription. We have used tandem-affinity protein purification and mass spectrometry to define the protein interaction network of the beta-catenin destruction complex. This assay revealed that WTX, a protein encoded by a gene mutated in Wilms tumors, forms a complex with beta-catenin, AXIN1, beta-TrCP2 (beta-transducin repeat-containing protein 2), and APC (adenomatous polyposis coli). Functional analyses in cultured cells, Xenopus, and zebrafish demonstrate that WTX promotes beta-catenin ubiquitination and degradation, which antagonize WNT/beta-catenin signaling. These data provide a possible mechanistic explanation for the tumor suppressor activity of WTX.


Subject(s)
Signal Transduction , Tumor Suppressor Proteins/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism , Adaptor Proteins, Signal Transducing , Adenomatous Polyposis Coli Protein/metabolism , Animals , Axin Protein , Cell Line , Cell Line, Tumor , Cell Nucleus/metabolism , Cytoplasm/metabolism , Genes, Wilms Tumor , Humans , Kidney Neoplasms/genetics , Protein Binding , Protein Interaction Mapping , Proteomics , RNA Interference , Recombinant Fusion Proteins/metabolism , Repressor Proteins/metabolism , Transduction, Genetic , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Wilms Tumor/genetics , Xenopus Proteins , Zebrafish , beta-Transducin Repeat-Containing Proteins/metabolism
19.
Proc Natl Acad Sci U S A ; 104(18): 7444-8, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17460038

ABSTRACT

The Wnt/beta-catenin signaling pathway regulates cell fate and behavior during embryogenesis, adult tissue homeostasis, and regeneration. When inappropriately activated, the pathway has been linked to colorectal cancer and melanoma, and when attenuated it may contribute to Alzheimer's disease and osteoporosis. Small molecules that modulate Wnt signaling will likely provide new insights into the regulation of this key developmental pathway and ultimately provide pharmacological agents to control Wnt signaling in vivo. To this end, we screened a library of 100,000 small molecules for activity in a cell-based assay of Wnt/beta-catenin signaling and discovered a purine derivative, QS11, that synergizes with Wnt-3a ligand in the activation of Wnt/beta-catenin signal transduction. Through affinity chromatography and subsequent functional assays, we showed that QS11 binds and inhibits the GTPase activating protein of ADP-ribosylation factor 1 (ARFGAP1), suggesting that QS11 modulates Wnt/beta-catenin signaling through an effect on protein trafficking. Consistent with its function as an ARFGAP inhibitor, QS11 inhibits migration of ARFGAP overexpressing breast cancer cells.


Subject(s)
Purines/pharmacology , Signal Transduction/drug effects , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Cell Line , Cell Movement/drug effects , Drug Evaluation, Preclinical , Humans , Molecular Structure , Purines/chemistry , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...