Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 301(6): R1648-57, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21917906

ABSTRACT

The hypothalamus-pituitary-adrenal (HPA) axis is activated during an immune challenge to liberate energy and modulate immune responses via feedback and regulatory mechanisms. Inflammatory cytokines and prostaglandins are known contributors to HPA activation; however, most previous studies only looked at specific time points following LPS administration. Since whole bacteria have different immune stimulatory properties compared with LPS, the aim of the present studies was to determine whether different immune products contribute to HPA activation at different times following live Escherichia coli challenge. Sprague-Dawley rats were injected intraperitoneally with E. coli (2.5 × 10(7) CFU) and a time course of circulating corticosterone, ACTH, inflammatory cytokines, and PGE(2) was developed. Plasma corticosterone peaked 0.5 h after E. coli and steadily returned to baseline by 4 h. Plasma PGE(2) correlated with the early rise in plasma corticosterone, whereas inflammatory cytokines were not detected until 2 h. Pretreatment with indomethacin, a nonselective cyclooxygenase inhibitor, completely blocked the early rise in plasma corticosterone, but not at 2 h, whereas pretreatment with IL-6 antibodies had no effect on the early rise in corticosterone but attenuated corticosterone at 2 h. Interestingly, indomethacin pretreatment did not completely block the early rise in corticosterone following a higher concentration of E. coli (2.5 × 10(8) CFU). Further studies revealed that only animals receiving indomethacin prior to E. coli displayed elevated plasma and liver cytokines at early time points (0.5 and 1 h), suggesting prostaglandins suppress early inflammatory cytokine production. Overall, these data indicate prostaglandins largely mediate the early rise in plasma corticosterone, while inflammatory cytokines contribute to maintaining levels of corticosterone at later time points.


Subject(s)
Escherichia coli Infections/metabolism , Escherichia coli/physiology , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/drug effects , Indomethacin/pharmacology , Male , Prostaglandins/genetics , Prostaglandins/metabolism , Rats , Rats, Sprague-Dawley , Time Factors
2.
Neuroscience ; 188: 48-54, 2011 Aug 11.
Article in English | MEDLINE | ID: mdl-21605631

ABSTRACT

Induction of brain cytokines during times of stress has potent effects on altering behavior, mood, and cognitive functioning. Currently, it is unknown why exposure to some stressors such as tailshock and footshock elevate brain cytokines, while exposure to swim, predator odor, and restraint stress do not. Recent data indicate that brain noradrenergic signaling mediates brain cytokine production suggests magnitude of norepinephrine release during stress may be critical in initiating brain cytokine production. The aim of the current study was to investigate stress-induced brain cytokines between rat strains that differ in their magnitude of stress responsiveness as measured by brain norepinephrine and HPA responses. Sprague-Dawley and Fischer rats were placed in a restraint bag for 1 h or 2 h and sacrificed immediately following stressor termination. Exposure to restraint significantly elevated hypothalamic interleukin (IL)-1ß and IL-1 receptor type (R) 2 mRNA after 1 h and IL-1ß protein after 2 h in the high stress responsive Fischer rats, but not in Sprague-Dawley rats. IL-6, IL-1R1, Il-1 receptor antagonist (RA), and cyclooxygenase (Cox)-2 mRNA were not altered and neither there was expression of any cytokines in the hippocampus or circulating cytokines in either strain. Administration of desipramine (a norepinephrine reuptake inhibitor) to Sprague-Dawley rats was sufficient either alone or in combination with stress to increase IL-1ß mRNA in the hypothalamus and desipramine combined with stress was sufficient to increase IL-1R2 mRNA in the hypothalamus. These data support our hypothesis that there is a critical threshold of brain norepinephrine necessary to stimulate brain cytokines, which may help to explain why severe stressors are more commonly reported to induce brain cytokines. These data also suggest an organisms' susceptibility to stress-induced brain cytokine production, depends on responsiveness and regulation of noradrenergic neurons.


Subject(s)
Brain/metabolism , Cytokines/metabolism , Norepinephrine/metabolism , Stress, Psychological/metabolism , Animals , Cytokines/analysis , Hypothalamo-Hypophyseal System/physiology , Male , Norepinephrine/analysis , Pituitary-Adrenal System/physiology , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...