Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging Neurosci ; 10: 18, 2018.
Article in English | MEDLINE | ID: mdl-29441014

ABSTRACT

The cause of Alzheimer's disease (AD) remains uncertain. The accumulation of amyloid peptides (Aß) is the main pathophysiological hallmark of the disease. Spatial deficit is an important initial sign of AD, while other types of memory impairments that appear in later stages. The Barnes maze allows the detection of subtle alterations in spatial search by the analysis of use of different strategies. Previous findings showed a general performance deficit in this task following long-term (35 days) infusion of Aß, which corresponds to the moderate or severe impairments of the disease. In the present study, we evaluated the effects of a low-dose 15-day long treatment with Aß peptides on spatial and non-spatial strategies of rats tested in the Barnes maze. Aß peptides (0.5 µL/site/day; 30 pmoL solution of Aß1-40:Aß1-42 10:1) or saline were bilaterally infused into the CA1 (on the first treatment day) and intraventricularly (on the following 15 days) in 6-month-old Wistar male rats. Aß infusion induced a deficit in the performance (increased latency and distance traveled to reach the target compared to saline group). In addition, a significant association between treatment and search strategy in the retrieval trial was found: Aß group preferred the non-spatial search strategy, while saline group preferred the spatial search. In conclusion, the protocol of Aß infusion used here induced a subtle cognitive deficit that was specific to spatial aspects. Indeed, animals under Aß treatment still showed retrieval, but using non-spatial strategies. We suggest that this approach is potentially useful to the study of the initial memory deficits in early AD.

2.
Front Aging Neurosci ; 9: 198, 2017.
Article in English | MEDLINE | ID: mdl-28676755

ABSTRACT

Genetic susceptibility contributes to the etiology of sporadic Parkinson's Disease (PD) and worldwide studies have found positive associations of polymorphisms in the alpha-synuclein gene (SNCA) with the risk for PD. However, little is known about the influence of variants of SNCA in individual traits or phenotypical aspects of PD. Further, there is a lack of studies with Latin-American samples. We evaluated the association between SNCA single nucleotide polymorphisms (single nucleotide polymorphisms, SNPs - rs2583988, rs356219, rs2736990, and rs11931074) and PD risk in a Brazilians sample. In addition, we investigated their potential interactions with environmental factors and specific clinical outcomes (motor and cognitive impairments, depression, and anxiety). A total of 105 PD patients and 101 controls participated in the study. Single locus analysis showed that the risk allele of all SNPs were more frequent in PD patients (p < 0.05), and the associations of SNPs rs2583988, rs356219, and rs2736990 with increased PD risk were confirmed. Further, the G-rs356219 and C-rs2736990 alleles were associated with early onset PD. T-rs2583988, G-rs356219 and C-2736990 alleles were significantly more frequent in PD patients with cognitive impairments than controls in this condition. In addition, in a logistic regression model, we found an association of cognitive impairment with PD, and the practice of cognitive activity and smoking habits had a protective effect. This study shows for the first time an association of SNCA polymorphism and PD in a South-American sample. In addition, we found an interaction between SNP rs356219 and a specific clinical outcome, i.e., the increased risk for cognitive impairment in PD patients.

3.
Behav Brain Res ; 328: 138-148, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28432010

ABSTRACT

Previous studies showed that the repeated administration with a low dose of reserpine (RES) induces a gradual appearance of motor signs and cognitive deficits compatible with parkinsonism in rodents. Environmental stimulation has neuroprotective effects in animal models of neurodegenerative damage, including acutely induced parkinsonism. We investigated the effects of exposure to an enriched environment (EE) on motor, cognitive and neuronal (levels of tyrosine hydroxylase, TH and brain derived neurotrophic factor, BDNF) deficits induced by a progressive model of Parkinson's disease (PD) in mice. Male mice were repeatedly treated with vehicle or 0.1mg/kg of RES (s.c) and kept under two housing conditions: standard environment (SE) and EE. In animals kept in SE, the treatment with RES induced deficits in motor function (catalepsy test, open field and oral movements), in novel object recognition (NOR) and plus-maze discriminative avoidance tasks. The environmental stimulation facilitated the recovery of motor deficits assessed by the catalepsy test after the end of treatment. Additionally, exposure to EE prevented the memory deficit in the NOR task. Treatment with RES induced a reduction in the number of TH positive cells in SNpc and VTA, which recovered 30days after the end of treatment. Finally, RES reduced the levels of BDNF in the striatum and the exposure to the EE prevented this effect. These results suggest that plastic brain changes induced by EE promote beneficial effects on the progression of neuronal impairment related to PD.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Corpus Striatum/metabolism , Environment , Memory Disorders/prevention & control , Parkinsonian Disorders/therapy , Animals , Avoidance Learning/physiology , Catalepsy/metabolism , Catalepsy/pathology , Catalepsy/therapy , Corpus Striatum/pathology , Disease Progression , Male , Memory Disorders/metabolism , Memory Disorders/pathology , Memory, Short-Term/physiology , Mice , Motor Activity/physiology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Parkinsonian Disorders/psychology , Random Allocation , Recognition, Psychology/physiology , Reserpine , Tyrosine 3-Monooxygenase/metabolism
4.
Front Aging Neurosci ; 9: 78, 2017.
Article in English | MEDLINE | ID: mdl-28396635

ABSTRACT

Reserpine is an irreversible inhibitor of vesicular monoamine transporter-2 (VMAT2) used to study Parkinson's disease (PD) and screening for antiparkinsonian treatments in rodents. Recently, the repeated treatment with a low-dose of reserpine was proposed as a progressive model of PD. Rats under this treatment show progressive catalepsy behavior, oral movements and spontaneous motor activity decrement. In parallel, compared to Wistar rats, spontaneously hypertensive rats (SHR) are resistant to acute reserpine-induced oral dyskinesia. We aimed to assess whether SHR would present differential susceptibility to repeated reserpine-induced deficits in the progressive model of PD. Male Wistar and SHR rats were administered 15 subcutaneously (s.c.) injections of reserpine (0.1 mg/kg) or vehicle, every other day and motor activity was assessed by the catalepsy, oral movements and open field tests. Only reserpine-treated Wistar rats presented increased latency to step down in the catalepsy test and impaired spontaneous activity in the open field. On the other hand, there was an increase in oral movements in both reserpine-treated strains, although with reduced magnitude and latency to instauration in SHR. After a 15-day withdrawn period, both strains recovered from motor impairment, but SHR animals expressed reduced latencies to reach control levels. Finally, we performed immunohistochemistry for tyrosine hydroxylase (TH) and α-synuclein (α-syn) 48 h after the last injection or 15 days after withdrawn. Reserpine-treated animals presented a reduction in TH and an increase in α-syn immunoreactivity in the substantia nigra and dorsal striatum (dSTR), which were both recovered after 15 days of withdraw. Furthermore, SHR rats were resistant to reserpine-induced TH decrement in the substantia nigra, and presented reduced immunoreactivity to α-syn in the dSTR relative to Wistar rats, irrespective of treatment. This effect was accompanied by increase of malondaldhyde (MDA) in the striatum of reserpine-treated Wistar rats, while SHR presented reduced MDA in both control and reserpine conditions relative to Wistar strain. In conclusion, the current results show that SHR are resilient to motor and neurochemical impairments induced by the repeated low-dose reserpine protocol. These findings indicate that the neurochemical, molecular and genetic differences in the SHR strain are potential relevant targets to the study of susceptibility to PD.

5.
Behav Brain Res ; 253: 68-77, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23831411

ABSTRACT

Studies have suggested that cognitive deficits can precede motor alterations in Parkinson's disease (PD). However, in general, classic animal models are based on severe motor impairment after one single administration of neurotoxins, and thereby do not express the progressive nature of the pathology. A previous study showed that the repeated administration with a low dose (0.1mg/kg) of the monoamine depleting agent reserpine induces a gradual appearance of motor signs of pharmacological parkinsonism in rats. Here, we showed this repeated treatment with reserpine induced a memory impairment (evaluated by the novel object recognition task) before the gradual appearance of the motor signs. Additionally, these alterations were accompanied by decreased tyrosine hydroxylase (TH) striatal levels and reduced number of TH+ cells in substantia nigra pars compacta (SNpc). After 30 days without treatment, reserpine-treated animals showed normal levels of striatal TH, partial recovery of TH+ cells in SNpc, recovery of motor function, but not reversal of the memory impairment. Furthermore, the motor alterations were statistically correlated with decreased TH levels (GD, CA1, PFC and DS) and number of TH+ cells (SNpc and VTA) in the brain. Thus, we extended previous results showing that the gradual appearance of motor impairment induced by repeated treatment with a low dose of reserpine is preceded by short-term memory impairment, as well as accompanied by neurochemical alterations compatible with the pathology of PD.


Subject(s)
Cognition/physiology , Dyskinesia, Drug-Induced/psychology , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/psychology , Reserpine , Sympatholytics , Tyrosine 3-Monooxygenase/metabolism , Animals , Behavior, Animal/drug effects , Brain/drug effects , Brain/enzymology , Catalepsy/chemically induced , Catalepsy/psychology , Data Interpretation, Statistical , Immunohistochemistry , Male , Motor Activity/drug effects , Parkinson Disease, Secondary/enzymology , Rats , Recognition, Psychology/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...