Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 554: 276-283, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30423417

ABSTRACT

The aim of this work is to test the in vivo behavior of a mucoadhesive vaginal emulsion resistant to the clearance of vaginal fluids using ciprofloxacin (CPX) as an anti-infective model of drug. CPX is a broad-spectrum antibiotic used in the treatment of sexual tissues infections, as intravenous injection in a dose of 20 mg every 12 h. In this study, CPX was incorporated in water in silicone (W/S) mucoadhesive emulsions and the in vivo residence time and the CPX in vivo absorption and distribution to the sexual organs was studied using the rat as animal model. W/S emulsion shows excellent in vitro bioadhesion having high resistance to the vaginal fluids clearance. The drug release profiles show a constant release of CPX during at least 6 h according to a zero-order kinetics. In vivo computerized PET/CT Image Analysis after intravaginal administration to rats indicates that W/S emulsions remain in the vaginal area for a long time and shows a good absorption of the radiotracers used as markers through the vaginal mucosa. Ciprofloxacin pharmacokinetic studies developed after the single intravaginal administration of W/S emulsion shows a good absorption and distribution of CPX on the uterus and ovarian tissue. A significant concentration of CPX in the sexual tissues was observed after 24 h of administration of W/S emulsion. Therefore, W/S emulsions have a good in vivo residence and drug release in the vaginal mucosae showing a great potential for the treatment of sexual tissues infections, as vaginal bioadhesive delivery systems of antinfectious drugs.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Ciprofloxacin/administration & dosage , Silicones/chemistry , Vagina/metabolism , Adhesiveness , Administration, Intravaginal , Animals , Anti-Bacterial Agents/pharmacokinetics , Chemistry, Pharmaceutical/methods , Ciprofloxacin/pharmacokinetics , Delayed-Action Preparations , Drug Liberation , Emulsions , Female , Mucous Membrane/metabolism , Positron Emission Tomography Computed Tomography , Rats , Rats, Inbred WKY , Tissue Distribution , Water/chemistry
2.
Int J Pharm ; 477(1-2): 495-505, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25445529

ABSTRACT

The aim of this study is to propose that mucoadhesive vaginal emulsions can be able to resist the clearance effect of vaginal fluid and to have an effective control release of progesterone. With this goal, silicon derivative, cyclomethicone pentamer, was selected as the bioadhesive and water resistant material. In order to obtain a system which is insensitive to the dilution of aqueous fluids, water in silicone (W/S) emulsions were prepared and different proportions of cyclomethicone as well as 8% or 15% w/w of progesterone were employed. The rheological, mechanical and mucoadhesive properties of emulsions were characterized and the drug release was measured for each formulation. Mucoadhesive behavior was determined and the influence of simulated vaginal fluid (SVF) at bioadhesion was assessed using three commercial mucoadhesive vaginal gels (Crinone(®), K-Y jelly(®) and Zidoval(®)) as the bioadhesive references. All assayed emulsions have good rheological and mechanical properties and their consistence and viscosity increase when the proportion of the internal phase increases. Related to mucoadhesion, in the absence of SVF, W/S emulsions showed similar bioadhesive levels like the commercial formulations. However, in the presence of SVF, W/S emulsions are able to keep their mucoadhesive properties while the marketed references drastically lose their consistency and adherence to the vaginal mucosa. Drug release profiles from W/S emulsion show that progesterone is released with pseudo-order zero kinetics and a constant release rate is maintained for at least two weeks. The results of the in vivo studies developed in rats show that after a single vaginal administration, bioadhesive W/S emulsions increase the uterine tissue progesterone levels in young and postmenopausal rats. Moreover in postmenopausal rats, they provide high uterine levels of progesterone compared to the bioadhesive-marketed gel used as a reference. Therefore, W/S emulsions have an interesting potential as bioadhesive vaginal delivery systems for drug administration.


Subject(s)
Bodily Secretions/metabolism , Progesterone/analogs & derivatives , Tissue Adhesives/chemistry , Vagina/metabolism , Vaginal Absorption , Animals , Cattle , Delayed-Action Preparations , Drug Liberation , Emulsions , Female , Humans , Mucous Membrane/drug effects , Mucous Membrane/metabolism , Particle Size , Progesterone/administration & dosage , Progesterone/pharmacokinetics , Rats, Wistar , Rheology , Solubility , Vagina/drug effects , Vaginal Absorption/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...