Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 16(36): e1907693, 2020 09.
Article in English | MEDLINE | ID: mdl-32643290

ABSTRACT

Current investigations into hazardous nanoparticles (i.e., nanotoxicology) aim to understand the working mechanisms that drive toxicity. This understanding has been used to predict the biological impact of the nanocarriers as a function of their synthesis, material composition, and physicochemical characteristics. It is particularly critical to characterize the events that immediately follow cell stress resulting from nanoparticle internalization. While reactive oxygen species and activation of autophagy are universally recognized as mechanisms of nanotoxicity, the progression of these phenomena during cell recovery has yet to be comprehensively evaluated. Herein, primary human endothelial cells are exposed to controlled concentrations of polymer-functionalized silica nanoparticles to induce lysosomal damage and achieve cytosolic delivery. In this model, the recovery of cell functions lost following endosomal escape is primarily represented by changes in cell distribution and the subsequent partitioning of particles into dividing cells. Furthermore, multilamellar bodies are found to accumulate around the particles, demonstrating progressive endosomal escape. This work provides a set of biological parameters that can be used to assess cell stress related to nanoparticle exposure and the subsequent recovery of cell processes as a function of endosomal escape.


Subject(s)
Endothelial Cells , Nanoparticles , Polymers , Silicon Dioxide , Cell Line , Endosomes/drug effects , Endosomes/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Models, Biological , Nanoparticles/metabolism , Nanoparticles/toxicity , Polymers/chemistry , Silicon Dioxide/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...