Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 352: 141413, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336037

ABSTRACT

The marine microalgae Ostreopsis cf. ovata are a well-known producer of palytoxin (PlTXs) analogues, i.e. ovatoxins (OVTXs) among others, which arouse concern for animal and human health. Both in field and laboratory studies, presence of OVTXs, detected in species directly feeding on O. cf. ovata, was frequently correlated with impairment on organisms' physiology, development and behaviour, while similar knowledge is still lacking for animals feeding on contaminated preys. In this study, transfer and toxicity of OVTXs were evaluated in an exposure experiment, in which gilthead seabream Sparus aurata was fed with bivalve mussel Mytilus galloprovincialis, contaminated by a toxic strain of O. cf. ovata. Mussels exposed to O. cf. ovata for 21 days accumulated meanly 188 ± 13 µg/kg OVTXs in the whole tissues. Seabreams fed with OVTX-contaminated mussels started to reject the food after 6 days of contaminated diet. Although no detectable levels of OVTXs were measured in muscle, liver, gills and gastro-intestinal tracts, the OVTX-enriched diet induced alterations of lipid metabolism in seabreams livers, displaying a decreased content of total lipid and fatty acid, together with overexpression of fatty acid biosynthetic genes, downregulation of ß-oxidation genes and modulation of several genes related to lipid transport and regulation. Results from this study would suggest the hypothesis that OVTXs produced by O. cf. ovata may not be subject to bioaccumulation in fish fed on contaminated preys, being however responsible of significant biological effects, with important implications for human consumption of seafood products.


Subject(s)
Dinoflagellida , Mytilus , Sea Bream , Animals , Humans , Marine Toxins/toxicity , Lipid Metabolism , Seafood , Dinoflagellida/genetics , Fatty Acids , Lipids
2.
Molecules ; 27(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897878

ABSTRACT

Paralytic Shellfish Toxins (PSTs) are marine biotoxins, primarily produced by dinoflagellates of the genera Gymnodinium spp., Alexandrium spp. They can accumulate in shellfish and, through the food chain, be assimilated by humans, giving rise to Paralytic Shellfish Poisoning. The maximum permitted level for PSTs in bivalves is 800 µg STX·2HCl eqv/kg (Reg. EC N° 853/2004). Until recently, the reference analytical method was the Mouse Bioassay, but Reg. EU N° 1709/2021 entered into force on 13 October 2021 and identified in the Standard EN14526:2017 or in any other internationally recognized validated method not entailing the use of live animals as official methods. Then the official control laboratories had urgently to fulfill the new requests, face out the Mouse Bioassay and implement instrumental analytical methods. The "EURLMB SOP for the analysis of PSTs by pre-column HPLC-FLD according to OMA AOAC 2005.06" also introduced a simplified semiquantitative approach to discriminate samples above and below the regulatory limit. The aim of the present paper is to present a new presence/absence test with a cut-off at 600 µg STX·2HCl eqv/kg enabling the fast discrimination of samples with very low PSTs levels from those to be submitted to the full quantitative confirmatory EN14526:2017 method. The method was implemented, avoiding the use of a large number of certified reference standards and long quantification procedures, resulting in an efficient, economical screening instrument available for official control laboratories. The protocol was fully validated, obtaining good performances in terms of repeatability (<11%) and recovery (53−106%) and accredited according to ISO/IEC 17025. The method was applied to mollusks collected from March 2021 to February 2022 along the Marche region in the frame of marine toxins official control.


Subject(s)
Bivalvia , Dinoflagellida , Shellfish Poisoning , Animals , Chromatography, High Pressure Liquid/methods , High-Throughput Screening Assays , Humans , Marine Toxins , Mice , Shellfish/analysis , Shellfish Poisoning/prevention & control
3.
Mar Drugs ; 21(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36662181

ABSTRACT

Tetrodotoxins (TTXs), the pufferfish venom traditionally associated with Indo-Pacific area, has been reported during last decades in ever wider range of marine organisms and ever more geographical areas, including shellfish in Europe. Wild mussels (Mytilus galloprovincialis) grown in the Marche Region (N Adriatic Sea, Italy) were shown to be prone to TTX contamination during the warm season, with a suspected role of Vibrio alginolyticus characterized by non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS)-encoding genes. This work aimed to deepen the knowledge about the toxin's origin and the way through which it accumulates in mussels. A two-year study (spring-summer 2020-2021) confirmed the recurrent presence of TTX (11-68 µg kg-1) in the official monitored natural mussel beds of the Conero Riviera. During 2021, a supplementary nonroutine monitoring of a natural mussel bed in the same area was carried out weekly from June until August for TTXs and/or the presence of V. alginolyticus. Biotic (mussels, mesozooplankton, worms and phytoplankton); abiotic (water and sediment) matrices and phytoplankton assemblage characterizations were studied. Mussels showed relevant TTX contamination levels (9-296 µg kg-1) with extremely rapid TTX accumulation/depletion rates. The toxin presence in phytoplankton and its distribution in the different mussel tissues supports its possible exogenous origin. The V. alginolyticus count trend overlaps that of TTX contamination in mussels, and similar trends were reported also for some phytoplankton species. The role of V. alginolyticus carrying NRPS or PKS genes as a possible TTX source and of phytoplankton as a "potential vector" should therefore be further investigated.


Subject(s)
Mytilus , Shellfish Poisoning , Animals , Tetrodotoxin , Shellfish , Seafood , Phytoplankton/chemistry
4.
Environ Pollut ; 286: 117535, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34119863

ABSTRACT

The water intake of a drinking water treatment plant (DWTP) in Central Italy was monitored over six bloom seasons for cyanotoxin severity, which supplies drinking water from an oligo-mesotrophic lake with microcystin levels up to 10.3 µg/L. The historical data showed that the water temperature did not show extreme/large seasonal variation and it was not correlated either with cyanobacterial growth or microcystin concentration. Among all parameters, the cyanobacteria growth was negatively correlated with humidity and manganese and positively correlated with atmospheric temperature. No significant correlation was found between microcystin concentration and the climatic parameters. Polymer(chitosan)-enhanced microfiltration (PEMF) and ultrafiltration (PEUF) were further tested as an alternative microcystin removal approach from dense cyanobacteria-rich flows. The dominant cyanobacteria in the water intake, Planktothrix rubescens, was isolated and enriched to simulate cyanobacterial blooms in the lake. The PEMF and PEUF were separately applied to enriched P. rubescens culture (PC) (microcystin = 1.236 µg/L) as well as to the sand filter backwash water (SFBW) of the DWTP where microcystin concentration was higher than 12 µg/L. The overall microcystin removal rates from the final effluent of PC (always <0.15 µg/L) were between 90.1-94.7% and 89.5-95.4% using 4 and 20 mg chitosan/L, respectively. Meanwhile, after the PEMF and PEUF of SFBW, the final effluent contained only 0.099 and 0.057 µg microcystin/L with an overall removal >99%. The presented results are the first from the application of chitosan to remove P. rubescens as well as the implementation of PEMF and PEUF on SFBW to remove cyanobacterial cells and associated toxins.


Subject(s)
Cyanobacteria , Drinking Water , Environmental Monitoring , Italy , Microcystins/analysis , Polymers , Ultrafiltration
5.
Mar Drugs ; 19(6)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070400

ABSTRACT

Tetrodotoxins (TTXs), potent neurotoxins, have become an increasing concern in Europe in recent decades, especially because of their presence in mollusks. The European Food Safety Authority published a Scientific Opinion setting a recommended threshold for TTX in mollusks of 44 µg equivalent kg-1 and calling all member states to contribute to an effort to gather data in order to produce a more exhaustive risk assessment. The objective of this work was to assess TTX levels in wild and farmed mussels (Mytilus galloprovincialis) harvested in 2018-2019 along the coastal area of the Marche region in the Central Adriatic Sea (Italy). The presence of Vibrio spp. carrying the non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes, which are suspected to be involved in TTX biosynthesis, was also investigated. Out of 158 mussel samples analyzed by hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry (HILIC-MS/MS), 11 (7%) contained the toxins at detectable levels (8-26 µg kg-1) and 3 (2%) contained levels above the EFSA safety threshold (61-76 µg kg-1). Contaminated mussels were all harvested from natural beds in spring or summer. Of the 2019 samples, 70% of them contained V. alginolyticus strains with the NRPS and/or PKS genes. None of the strains containing NRPS and/or PKS genes showed detectable levels of TTXs. TTXs in mussels are not yet a threat in the Marche region nor in Europe, but further investigations are surely needed.


Subject(s)
Mytilus/chemistry , Mytilus/microbiology , Neurotoxins/analysis , Tetrodotoxin/analysis , Vibrio alginolyticus/isolation & purification , Animals , Biological Monitoring , Food Contamination/analysis , Italy , Oceans and Seas , Peptide Synthases/genetics , Polyketide Synthases/genetics , Vibrio alginolyticus/genetics
6.
Toxins (Basel) ; 12(6)2020 06 04.
Article in English | MEDLINE | ID: mdl-32512714

ABSTRACT

Cyclic imines (CIs) are emerging marine lipophilic toxins (MLTs) occurring in microalgae and shellfish worldwide. The present research aimed to study CIs in mussels farmed in the Adriatic Sea (Italy) during the period 2014-2015. Twenty-eight different compounds belonging to spirolides (SPXs), gymnodimines (GYMs), pinnatoxins (PnTXs) and pteriatoxins (PtTXs) were analyzed by the official method for MLTs in 139 mussel samples collected along the Marche coast. Compounds including 13-desmethyl spirolide C (13-desMe SPX C) and 13,19-didesmethyl spirolide C (13,19-didesMe SPX C) were detected in 86% of the samples. The highest levels were generally reported in the first half of the year reaching 29.2 µg kg-1 in January/March with a decreasing trend until June. GYM A, for the first time reported in Italian mussels, was found in 84% of the samples, reaching the highest concentration in summer (12.1 µg kg-1). GYM A and SPXs, submitted to tissue distribution studies, showed the tendency to accumulate mostly in mussel digestive glands. Even if SPX levels in mussels were largely below the European Food Safety Authority (EFSA) reference of 400 µg SPXs kg-1, most of the samples contained CIs for the large part of the year. Since chronic toxicity data are still missing, monitoring is surely recommended.


Subject(s)
Heterocyclic Compounds, 4 or More Rings/analysis , Imines/analysis , Marine Toxins/analysis , Mytilus/chemistry , Animals , Aquaculture , Environmental Monitoring , Italy , Oceans and Seas , Seasons , Time Factors , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...