Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 114(17): 171801, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25978225

ABSTRACT

We present a search for a neutral, long-lived particle L that is produced in e+ e- collisions and decays at a significant distance from the e+ e- interaction point into various flavor combinations of two oppositely charged tracks. The analysis uses an e+ e- data sample with a luminosity of 489.1 fb(-1) collected by the BABAR detector at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and just below the ϒ(4S). Fitting the two-track mass distribution in search of a signal peak, we do not observe a significant signal, and set 90% confidence level upper limits on the product of the L production cross section, branching fraction, and reconstruction efficiency for six possible two-body L decay modes as a function of the L mass. The efficiency is given for each final state as a function of the mass, lifetime, and transverse momentum of the candidate, allowing application of the upper limits to any production model. In addition, upper limits are provided on the branching fraction B(B→XsL), where Xs is a strange hadronic system.

2.
Phys Rev Lett ; 114(8): 081801, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25768754

ABSTRACT

We present a measurement of the asymmetry A_{CP} between same-sign inclusive dilepton samples ℓ^{+}ℓ^{+} and ℓ^{-}ℓ^{-} (ℓ=e, µ) from semileptonic B decays in ϒ(4S)→BB[over ¯] events, using the complete data set recorded by the BABAR experiment near the ϒ(4S) resonance, corresponding to 471×10^{6} BB[over ¯] pairs. The asymmetry A_{CP} allows comparison between the mixing probabilities P(B[over ¯]^{0}→B^{0}) and P(B^{0}→B[over ¯]^{0}), and therefore probes CP and T violation. The result, A_{CP}=[-3.9±3.5(stat)±1.9(syst)]×10^{-3}, is consistent with the standard model expectation.

3.
Phys Rev Lett ; 113(20): 201801, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25432035

ABSTRACT

Dark sectors charged under a new Abelian interaction have recently received much attention in the context of dark matter models. These models introduce a light new mediator, the so-called dark photon (A^{'}), connecting the dark sector to the standard model. We present a search for a dark photon in the reaction e^{+}e^{-}→γA^{'}, A^{'}→e^{+}e^{-}, µ^{+}µ^{-} using 514 fb^{-1} of data collected with the BABAR detector. We observe no statistically significant deviations from the standard model predictions, and we set 90% confidence level upper limits on the mixing strength between the photon and dark photon at the level of 10^{-4}-10^{-3} for dark photon masses in the range 0.02-10.2 GeV. We further constrain the range of the parameter space favored by interpretations of the discrepancy between the calculated and measured anomalous magnetic moment of the muon.

4.
Phys Rev Lett ; 111(11): 111801, 2013 Sep 13.
Article in English | MEDLINE | ID: mdl-24074072

ABSTRACT

We measure the mass difference Δm0 between the D*(2010)+ and the D0 and the natural linewidth Γ of the transition D*(2010)+ → D0π+. The data were recorded with the BABAR detector at center-of-mass energies at and near the Υ(4S) resonance, and correspond to an integrated luminosity of approximately 477 fb(-1). The D0 is reconstructed in the decay modes D0 → K- π+ and D0 → K- π+ π- π+. For the decay mode D0 → K- π+ we obtain Γ = (83.4±1.7±1.5) keV and Δm0 = (145425.6±0.6±1.7) keV, [corrected] where the quoted errors are statistical and systematic, respectively. For the D0 → K- π+ π- π+ mode we obtain Γ = (83.2±1.5±2.6) keV and Δm0 = (145426.6±0.5±1.9) keV. [corrected] The combined measurements yield Γ = (83.3±1.2±1.4) keV and Δm0 = (145425.9±0.4±1.7) keV; the width is a factor of approximately 12 times more precise than the previous value, while the mass difference is a factor of approximately 6 times more precise.

5.
Phys Rev Lett ; 111(10): 101802, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-25166652

ABSTRACT

We present results of a search for CP violation in B0- B0 mixing with the BABAR detector. We select a sample of B0→D*- Xℓ+ ν decays with a partial reconstruction method and use kaon tagging to assess the flavor of the other B meson in the event. We determine the CP violating asymmetry ACP≡[N(B0B0)-N(B0B0)]/[N(B0B0)+N(B0B0)]=(0.06±0.17(-0.32)(+0.38))%, corresponding to ΔCP=1-|q/p|=(0.29±0.84(-1.61)(+1.88))×10(-3).

6.
Phys Rev Lett ; 109(19): 191801, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23215373

ABSTRACT

The photon spectrum in the inclusive electromagnetic radiative decays of the B meson, B → X(s)γ plus B → X(d)γ, is studied using a data sample of (382.8 ± 4.2) × 10(6)Υ(4S) → BB decays collected by the BABAR experiment at SLAC. The spectrum is used to extract the branching fraction B(B → X(s)γ) = (3.21 ± 0.33) × 10(-4) for E(γ) >1.8 GeV and the direct CP asymmetry A(CP) (B → X(s+d)γ) = 0.057 ± 0.063. The effects of detector resolution and Doppler smearing are unfolded to measure the photon energy spectrum in the B meson rest frame.


Subject(s)
Models, Theoretical , Nuclear Physics/methods , Photons , Mesons , Nuclear Energy
7.
Phys Rev Lett ; 109(21): 211801, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23215586

ABSTRACT

Although CP violation in the B meson system has been well established by the B factories, there has been no direct observation of time-reversal violation. The decays of entangled neutral B mesons into definite flavor states (B(0) or B(0)), and J/ψK(L)(0) or ccK(S)(0) final states (referred to as B(+) or B(-)), allow comparisons between the probabilities of four pairs of T-conjugated transitions, for example, B(0) → B(-) and B(-) → B(0), as a function of the time difference between the two B decays. Using 468 × 10(6) BB pairs produced in Υ(4S) decays collected by the BABAR detector at SLAC, we measure T-violating parameters in the time evolution of neutral B mesons, yielding ΔS(T)(+) = -1.37 ± 0.14(stat) ± 0.06(syst) and ΔS(T)(-) = 1.17 ± 0.18(stat) ± 0.11(syst). These nonzero results represent the first direct observation of T violation through the exchange of initial and final states in transitions that can only be connected by a T-symmetry transformation.

8.
Phys Rev Lett ; 109(10): 101802, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-23005279

ABSTRACT

Based on the full BABAR data sample, we report improved measurements of the ratios R(D(*))=B(B[over ¯]→D(*)τ(-)ν[over ¯](τ))/B(B[over ¯]→D(*)ℓ(ℓ)(-)ν[over ¯](ℓ)), where ℓ is either e or µ. These ratios are sensitive to new physics contributions in the form of a charged Higgs boson. We measure R(D)=0.440±0.058±0.042 and R(D(*))=0.332±0.024±0.018, which exceed the standard model expectations by 2.0σ and 2.7σ, respectively. Taken together, our results disagree with these expectations at the 3.4σ level. This excess cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model.

9.
Phys Rev Lett ; 108(21): 211801, 2012 May 25.
Article in English | MEDLINE | ID: mdl-23003239

ABSTRACT

Recent astrophysical and terrestrial experiments have motivated the proposal of a dark sector with GeV-scale gauge boson force carriers and new Higgs bosons. We present a search for a dark Higgs boson using 516 fb(-1) of data collected with the BABAR detector. We do not observe a significant signal and we set 90% confidence level upper limits on the product of the standard model-dark-sector mixing angle and the dark-sector coupling constant.

10.
Phys Rev Lett ; 107(22): 221803, 2011 Nov 25.
Article in English | MEDLINE | ID: mdl-22182022

ABSTRACT

We search for hadronic decays of a light Higgs boson (A(0)) produced in radiative decays of an Υ(2S) or Υ(3S) meson, Υ→γA(0). The data have been recorded by the BABAR experiment at the Υ(3S) and Υ(2S) center-of-mass energies and include (121.3±1.2)×10(6) Υ(3S) and (98.3±0.9)×10(6) Υ(2S) mesons. No significant signal is observed. We set 90% confidence level upper limits on the product branching fractions B(Υ(nS)→γA(0))B(A(0)→hadrons) (n=2 or 3) that range from 1×10(-6) for an A(0) mass of 0.3 GeV/c(2) to 8×10(-5) at 7 GeV/c(2).

SELECTION OF CITATIONS
SEARCH DETAIL
...