Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: mdl-34312224

ABSTRACT

Regulatory T cells (Tregs) play fundamental roles in maintaining peripheral tolerance to prevent autoimmunity and limit legitimate immune responses, a feature hijacked in tumor microenvironments in which the recruitment of Tregs often extinguishes immune surveillance through suppression of T-effector cell signaling and tumor cell killing. The pharmacological tuning of Treg activity without impacting on T conventional (Tconv) cell activity would likely be beneficial in the treatment of various human pathologies. PIP4K2A, 2B, and 2C constitute a family of lipid kinases that phosphorylate PtdIns5P to PtdIns(4,5)P2 They are involved in stress signaling, act as synthetic lethal targets in p53-null tumors, and in mice, the loss of PIP4K2C leads to late onset hyperinflammation. Accordingly, a human single nucleotide polymorphism (SNP) near the PIP4K2C gene is linked with susceptibility to autoimmune diseases. How PIP4Ks impact on human T cell signaling is not known. Using ex vivo human primary T cells, we found that PIP4K activity is required for Treg cell signaling and immunosuppressive activity. Genetic and pharmacological inhibition of PIP4K in Tregs reduces signaling through the PI3K, mTORC1/S6, and MAPK pathways, impairs cell proliferation, and increases activation-induced cell death while sparing Tconv. PIP4K and PI3K signaling regulate the expression of the Treg master transcriptional activator FOXP3 and the epigenetic signaling protein Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). Our studies suggest that the pharmacological inhibition of PIP4K can reprogram human Treg identity while leaving Tconv cell signaling and T-helper differentiation to largely intact potentially enhancing overall immunological activity.


Subject(s)
CCAAT-Enhancer-Binding Proteins/metabolism , Forkhead Transcription Factors/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , T-Lymphocytes, Regulatory/physiology , Ubiquitin-Protein Ligases/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Cell Proliferation , Cell Survival , Cloning, Molecular , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/immunology , Gene Expression Regulation, Enzymologic/physiology , Humans , Immunosuppression Therapy , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Quinazolines/pharmacology , Signal Transduction , Thiophenes/pharmacology , Ubiquitin-Protein Ligases/genetics
2.
Adv Biol Regul ; 76: 100722, 2020 05.
Article in English | MEDLINE | ID: mdl-32362560

ABSTRACT

The immune system is a complex network that acts to protect vertebrates from foreign microorganisms and carries out immunosurveillance to combat cancer. In order to avoid hyper-activation of the immune system leading to collateral damage tissues and organs and to prevent self-attack, the network has the intrinsic control mechanisms that negatively regulate immune responses. Central to this negative regulation are regulatory T (T-Reg) cells, which through cytokine secretion and cell interaction limit uncontrolled clonal expansion and functions of activated immune cells. Given that positive or negative manipulation of T-Regs activity could be utilised to therapeutically treat host versus graft rejection or cancer respectively, understanding how signaling pathways impact on T-Regs function should reveal potential targets with which to intervene. The phosphatidylinositol-3-kinase (PI3K) pathway controls a vast array of cellular processes and is critical in T cell activation. Here we focus on phosphoinositide 3-kinases (PI3Ks) and their ability to regulate T-Regs cell differentiation and function.


Subject(s)
Forkhead Transcription Factors/immunology , Neoplasms/immunology , Phosphatidylinositol 3-Kinases/immunology , Protein Subunits/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antineoplastic Agents, Immunological/therapeutic use , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Humans , Immunotherapy/methods , Lymphocyte Activation , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositols/immunology , Phosphatidylinositols/metabolism , Protein Subunits/antagonists & inhibitors , Protein Subunits/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Signal Transduction/drug effects , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/pathology , Th17 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/pathology , Th2 Cells/drug effects , Th2 Cells/immunology , Th2 Cells/pathology , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology
3.
Data Brief ; 25: 104324, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31453298

ABSTRACT

The data and information presented here refer to the research article entitled: "Reactivating endogenous mechanisms of cardiac regeneration via paracrine boosting with the human amniotic fluid stem cell secretome" (Balbi et al., 2019, Apr 04). This dataset illustrates the in vitro paracrine effect exerted by the human amniotic fluid stem cell secretome on rodent neonatal cardiomyocytes, human endothelial progenitors and different subsets of cardiac progenitor cells. Cytokine/chemokine profiling of the human amniotic fluid stem cell secretome is provided as well. This data can provide useful insights in regenerative medicine as demonstrating the in vitro cardioprotective and proliferative secretory paracrine potential of human fetal stem cells.

4.
Int J Cardiol ; 287: 87-95, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30987834

ABSTRACT

BACKGROUND: The adult mammalian heart retains residual regenerative capability via endogenous cardiac progenitor cell (CPC) activation and cardiomyocyte proliferation. We previously reported the paracrine cardioprotective capacity of human amniotic fluid-derived stem cells (hAFS) following ischemia or cardiotoxicity. Here we analyse the potential of hAFS secretome fractions for cardiac regeneration and future clinical translation. METHODS: hAFS were isolated from amniotic fluid leftover samples from prenatal screening. hAFS conditioned medium (hAFS-CM) was obtained following hypoxic preconditioning. Anti-apoptotic, angiogenic and proliferative effects were evaluated on rodent neonatal cardiomyocytes (r/mNVCM), human endothelial colony forming cells (hECFC) and human CPC. Mice undergoing myocardial infarction (MI) were treated with hAFS-CM, hAFS-extracellular vesicles (hAFS-EV), or EV-depleted hAFS-CM (hAFS-DM) by single intra-myocardial administration and evaluated in the short and long term. RESULTS: hAFS-CM improved mNVCM survival under oxidative and hypoxic damage, induced Ca2+-dependent angiogenesis in hECFC and triggered hCPC and rNVCM proliferation. hAFS-CM treatment after MI counteracted scarring, supported cardiac function, angiogenesis and cardiomyocyte cell cycle progression in the long term. hAFS-DM had no effect. hAFS-CM and hAFS-EV equally induced epicardium WT1+ CPC reactivation. Although no CPC cardiovascular differentiation was observed, our data suggests contribution to local angiogenesis by paracrine modulation. hAFS-EV alone were able to recapitulate all the beneficial effects exerted by hAFS-CM, except for stimulation of vessel formation. CONCLUSIONS: hAFS-CM and hAFS-EV can improve cardiac repair and trigger cardiac regeneration via paracrine modulation of endogenous mechanisms. While both formulations are effective in sustaining myocardial renewal, hAFS-CM retains higher pro-angiogenic potential, while hAFS-EV particularly enhances cardiac function.


Subject(s)
Amniotic Fluid/cytology , Heart Failure/therapy , Myocytes, Cardiac/pathology , Paracrine Communication/physiology , Stem Cell Transplantation/methods , Stem Cells/cytology , Animals , Animals, Newborn , Cell Differentiation , Cells, Cultured , Culture Media, Conditioned , Disease Models, Animal , Heart Failure/metabolism , Heart Failure/pathology , Humans , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Myocytes, Cardiac/metabolism , Rats , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...