Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36904591

ABSTRACT

The photosensitivity, responsivity, and signal-to-noise ratio of organic phototransistors depend on the timing characteristics of light pulses. However, in the literature, such figures of merit (FoM) are typically extracted in stationary conditions, very often from IV curves taken under constant light exposure. In this work, we studied the most relevant FoM of a DNTT-based organic phototransistor as a function of the timing parameters of light pulses, to assess the device suitability for real-time applications. The dynamic response to light pulse bursts at ~470 nm (close to the DNTT absorption peak) was characterized at different irradiances under various working conditions, such as pulse width and duty cycle. Several bias voltages were explored to allow for a trade-off to be made between operating points. Amplitude distortion in response to light pulse bursts was also addressed.

2.
Materials (Basel) ; 15(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36363091

ABSTRACT

Understanding radiation damage in materials has been a topic of great interest for many years and in multiple scientific sectors [...].

3.
Materials (Basel) ; 15(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36233872

ABSTRACT

This paper describes the scintillation features and the radiation damage in polyethylene naphthalate 100 µm-thick scintillators irradiated with an 11 MeV proton beam and with a 1 MeV electron beam at doses up to 15 and 85 Mrad, respectively. The scintillator emission spectrum, optical transmission, light yield loss, and scintillation pulse decay times were investigated before and after the irradiation. A deep blue emission spectrum peaked at 422 nm, and fast and slow scintillation decay time constants of the order of 1-2 ns and 25-30 nm, respectively, were measured. After irradiation, transmittance showed a loss of transparency for wavelengths between 380 and 420 nm, and a light yield reduction of ~40% was measured at the maximum dose of 85 Mrad.

4.
Materials (Basel) ; 14(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34443201

ABSTRACT

Nanostructured films of carbon and TiO2 nanoparticles have been produced by means of a simple two-step procedure based on flame synthesis and thermophoretic deposition. At first, a granular carbon film is produced on silicon substrates by the self-assembling of thermophoretically sampled carbon nanoparticles (CNPs) with diameters of the order of 15 nm. Then, the composite film is obtained by the subsequent thermophoretic deposition of smaller TiO2 nanoparticles (diameters of the order of 2.5 nm), which deposit on the surface and intercalate between the carbon grains by diffusion within the pores. A bipolar resistive switching behavior is observed in the composite film of CNP-TiO2. A pinched hysteresis loop is measured with SET and RESET between low resistance and high resistance states occurring for the electric field of 1.35 × 104 V/cm and 1.5 × 104 V/cm, respectively. CNP-TiO2 film produced by flame synthesis is initially in the low resistive state and it does not require an electroforming step. The resistance switching phenomenon is attributed to the formation/rupture of conductive filaments through space charge mechanism in the TiO2 nanoparticles, which facilitate/hinder the electrical conduction between carbon grains. Our findings demonstrate that films made of flame-formed CNP-TiO2 nanoparticles are promising candidates for resistive switching components.

SELECTION OF CITATIONS
SEARCH DETAIL
...