Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 123(36): 8806-10, 2001 Sep 12.
Article in English | MEDLINE | ID: mdl-11535087

ABSTRACT

The hydrothermal reaction of elemental Ag, or water-soluble silver sources, with UO3 and I2O5 at 200 degrees C for 5 days yields Ag4(UO2)4(IO3)2(IO4)2O2 in the form of orange fibrous needles. Single-crystal X-ray diffraction studies on this compound reveal a highly complex network structure consisting of three interconnected low-dimensional substructures. The first of these substructures are ribbons of UO8 hexagonal bipyramids that edge-share to form one-dimensional chains. These units further edge-share with pentagonal bipyramidal UO7 units to create ribbons. The edges of the ribbons are partially terminated by tetraoxoiodate(V), [IO4]3-, anions. The uranium oxide ribbons are joined by bridging iodate ligands to yield two-dimensional undulating sheets. These sheets help to form, and are linked together by, one-dimensional chains of edge-sharing AgO7 capped octahedral units and ribbons formed by corner-sharing capped trigonal planar AgO4 polyhedra, AgO6 capped square pyramids, and AgO6 octahedra. The [IO4]3- anions in Ag4(UO2)4(IO3)2)(IO4)2O2 are tetraoxoiodate(V), not metaperiodate, and contain I(V) with a stereochemically active lone-pair. Bond valence sum calculations are consistent with this formulation. Differential scanning calorimetry measurements show distinctly different thermal behavior of Ag4(UO2)4(IO3)2(IO4)2O2 versus other uranyl iodate compounds with endotherms at 479 and 494 degrees C. Density functional theory (DFT) calculations demonstrate that the approximate C2v geometry of the [IO4]3- anion can be attributed to a second-order Jahn-Teller distortion. DFT optimized geometry for the [IO4]3- anion is in good agreement with those measured from single-crystal X-ray diffraction studies on Ag4(UO2)4(IO3)2(IO4)2O2.

2.
Inorg Chem ; 40(11): 2554-69, 2001 May 21.
Article in English | MEDLINE | ID: mdl-11350234

ABSTRACT

[Pd(16)Ni(4)(CO)(22)(PPh(3))(4)](2)(-) (1) and [Pd(33)Ni(9)(CO)(41)(PPh(3))(6)](4)(-) (2) were obtained as the two major products from the reduction of PdCl(2)(PPh(3))(2) with [Ni(6)(CO)(12)](2)(-). Their crystal structures as [PPh(4)](+) salts were unambiguously determined from CCD X-ray crystallographic analyses; the resulting stoichiometries were ascertained from elemental analyses. Infrared, multinuclear (1)H, (31)P[(1)H] NMR, UV-vis, CV, variable-temperature magnetic susceptibility, and ESI FT/ICR mass spectrometric measurements were performed. The Pd(16)Ni(4) core of 1 ideally conforms to a ccp nu(3) tetrahedron of pseudo-T(d)() (4 3m) symmetry. Its geometry normal to each tetrahedral Pd(7)Ni(3) face (i.e., along each of the four 3-fold axes) may be viewed as a four-layer stacking of 20 metal atoms in a ccp [a(Ni(1)) b(Pd(3)) c(Pd(6)) a(Pd(7)Ni(3))] sequence. A comparative analysis of the different ligand connectivities about the analogous metal-core geometries in 1 and the previously reported [Os(20)(CO)(40)](2)(-) has stereochemical implications pertaining to the different possible modes of carbon monoxide attachment to ccp metal(111) surfaces. The unique geometry of the Pd(33)Ni(9) core of 2, which has pseudo-D(3)(h)() (6 2m) symmetry, consists of five equilateral triangular layers that are stacked in a hcp [a(Pd(7)Ni(3)) b(Pd(6)) a(Pd(7)Ni(3)) b(Pd(6)) a(Pd(7)Ni(3))] sequence. Variable-temperature magnetic susceptibility measurements indicated both 1 and 2 to be diamagnetic over the entire temperature range from 5.0 to 300 K. Neutral Pd(12)(CO)(12)(PPh(3))(6) (3) and [Pd(29)(CO)(28)(PPh(3))(7)](2)(-) (4) as the [PPh(4)](+) salt were obtained as minor decomposition products from protonation reactions of 1 and 2, respectively, with acetic acid. Compound 3 of pseudo-D(3)(d)() (3 2/m) symmetry represents the second highly deformed hexacapped octahedral member of the previously established homopalladium family of clusters containing uncapped, monocapped, bicapped, and tetracapped Pd(6) octahedra. The unprecedented centered 28-atom polyhedron for the Pd(29) core of 4 of pseudo-C(3)(v)() (3m) symmetry may be described as a four-layer stacking of 29 metal atoms in a mixed hcp/ccp [a(Pd(1)) b(Pd(3)) a(Pd(10)) c(Pd(15))] sequence.

SELECTION OF CITATIONS
SEARCH DETAIL
...