Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 49(11): 4759-61, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20446674

ABSTRACT

The mechanism of glutathione (GSH) oxidation by a nonheme ferryl species has been investigated. The reaction of [Fe(IV)(O)(N4Py)](2+) (1) with GSH in an aqueous solution leads to the rapid formation of a green intermediate, characterized as the low-spin ferric complex [Fe(III)(SG)(N4Py)](2+) (2) by UV-vis and electron paramagnetic resonance spectroscopies and by high-resolution time-of-flight mass spectrometry. Intermediate 2 decays to form the final products [Fe(II)(OH(2))(N4Py)](2+) and the disulfide GSSG over time. The overall reaction was fit to a three-step process involving rapid quenching of the ferryl by GSH, followed by the formation and decay of 2, which are both second-order processes.


Subject(s)
Coordination Complexes/chemistry , Ferric Compounds/chemistry , Glutathione/chemistry , Molecular Structure , Oxidation-Reduction
2.
Inorg Chem ; 48(16): 7729-39, 2009 Aug 17.
Article in English | MEDLINE | ID: mdl-19594118

ABSTRACT

Kinetic and mechanistic studies detailing the oxidation of substrates derived from the 20 natural amino acids by the ferryl complex [Fe(IV)(O)(N4Py)](2+) are described. Substrates of the general formula Ac-AA-NHtBu were treated with the ferryl complex under identical conditions ([Ac-AA-NHtBu] = 10 mM, [Fe] = 1 mM, 1:1 H(2)O/CH(3)CN), and pseudo-first-order rate constants were obtained. Relative rate constants calculated from these data illustrated the five most reactive substrates; in order of decreasing reactivity were those derived from Cys, Tyr, Trp, Met, and Gly. Second-order rate constants were determined for these substrates by varying substrate concentration under pseudo-first-order conditions. Substrates derived from the other natural amino acids did not display significant reactivity, accelerating decomposition of the ferryl complex at a rate less than 10 times that of the control reaction with no substrate added. Ferryl decomposition rates changed in D(2)O/CD(3)CN for the Cys, Tyr, and Trp substrates, giving deuterium kinetic isotope effects of 4.3, 29, and 5.2, respectively, consistent with electron-transfer, proton-transfer (Cys and Trp), or hydrogen atom abstraction (Tyr) mechanisms. Decomposition rates for [Fe(IV)(O)(N4Py)](2+) in the presence of the Met and Gly substrates were identical in H(2)O/CH(3)CN versus D(2)O/CD(3)CN solvents. A deuterium kinetic isotope effect of 4.8 was observed with the labeled substrate 2,2-d(2)-Ac-Gly-NHtBu, consistent with [Fe(IV)(O)(N4Py)](2+) abstracting an alpha-hydrogen atom from Ac-Gly-NHtBu and generating a glycyl radical. Abstraction of alpha-hydrogen atoms from amino acid substrates other than Gly and oxidation of side chains contained in the amino acids other than Cys, Tyr, Trp, and Met were slow by comparison.


Subject(s)
Amino Acids/chemistry , Iron/chemistry , Organometallic Compounds/chemistry , Peptides/chemistry , Amino Acids, Basic/chemistry , Kinetics , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...