Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33649235

ABSTRACT

The versatility of mitogen-activated protein kinases (MAPKs) in translating exogenous and endogenous stimuli into appropriate cellular responses depends on its substrate specificity. In animals, several mechanisms have been proposed about how MAPKs maintain specificity to regulate distinct functional pathways. However, little is known of mechanisms that enable substrate selectivity in plant MAPKs. Small ubiquitin-like modifier (SUMO), a posttranslational modification system, plays an important role in plant development and defense by rapid reprogramming of cellular events. In this study we identified a functional SUMO interaction motif (SIM) in Arabidopsis MPK3 and MPK6 that reveals a mechanism for selective interaction of MPK3/6 with SUMO-conjugated WRKY33, during defense. We show that WRKY33 is rapidly SUMOylated in response to Botrytis cinerea infection and flg22 elicitor treatment. SUMOylation mediates WRKY33 phosphorylation by MPKs and consequent transcription factor activity. Disruption of either WRKY33 SUMO or MPK3/6 SIM sites attenuates their interaction and inactivates WRKY33-mediated defense. However, MPK3/6 SIM mutants show normal interaction with a non-SUMOylated form of another transcription factor, SPEECHLESS, unraveling a role for SUMOylation in differential substrate selectivity by MPKs. We reveal that the SUMO proteases, SUMO PROTEASE RELATED TO FERTILITY1 (SPF1) and SPF2 control WRKY33 SUMOylation and demonstrate a role for these SUMO proteases in defense. Our data reveal a mechanism by which MPK3/6 prioritize molecular pathways by differentially selecting substrates using the SUMO-SIM module during defense responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Botrytis/immunology , Mitogen-Activated Protein Kinase Kinases , Mitogen-Activated Protein Kinases , Plant Diseases , Ubiquitins , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/immunology , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/immunology , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/immunology , Plant Diseases/genetics , Plant Diseases/immunology , Ubiquitins/genetics , Ubiquitins/immunology
3.
Curr Biol ; 30(8): 1410-1423.e3, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32109396

ABSTRACT

Brassinosteroids (BRs) play crucial roles in plant development, but little is known of mechanisms that integrate environmental cues into BR signaling. Conjugation to the small ubiquitin-like modifier (SUMO) is emerging as an important mechanism to transduce environmental cues into cellular signaling. In this study, we show that SUMOylation of BZR1, a key transcription factor of BR signaling, provides a conduit for environmental influence to modulate growth during stress. SUMOylation stabilizes BZR1 in the nucleus by inhibiting its interaction with BIN2 kinase. During salt stress, Arabidopsis plants arrest growth through deSUMOylation of BZR1 in the cytoplasm by promoting the accumulation of the BZR1 targeting SUMO protease, ULP1a. ULP1a mutants are salt tolerant and insensitive to the BR inhibitor, brassinazole. BR treatment stimulates ULP1a degradation, allowing SUMOylated BZR1 to accumulate and promote growth. This study uncovers a mechanism for integrating environmental cues into BR signaling to shape growth.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Brassinosteroids/metabolism , Cysteine Endopeptidases/genetics , DNA-Binding Proteins/genetics , Signal Transduction/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Cell Nucleus , Cysteine Endopeptidases/metabolism , DNA-Binding Proteins/metabolism , Sumoylation
4.
Nat Commun ; 9(1): 5185, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30518761

ABSTRACT

Detection of conserved microbial patterns by host cell surface pattern recognition receptors (PRRs) activates innate immunity. The FLAGELLIN-SENSITIVE 2 (FLS2) receptor perceives bacterial flagellin and recruits another PRR, BAK1 and the cytoplasmic-kinase BIK1 to form an active co-receptor complex that initiates antibacterial immunity in Arabidopsis. Molecular mechanisms that transmit flagellin perception from the plasma-membrane FLS2-associated receptor complex to intracellular events are less well understood. Here, we show that flagellin induces the conjugation of the SMALL UBIQUITIN-LIKE MODIFIER (SUMO) protein to FLS2 to trigger release of BIK1. Disruption of FLS2 SUMOylation can abolish immune responses, resulting in susceptibility to bacterial pathogens in Arabidopsis. We also identify the molecular machinery that regulates FLS2 SUMOylation and demonstrate a role for the deSUMOylating enzyme, Desi3a in innate immunity. Flagellin induces the degradation of Desi3a and enhances FLS2 SUMOylation to promote BIK1 dissociation and trigger intracellular immune signalling.


Subject(s)
Arabidopsis Proteins/immunology , Arabidopsis/immunology , Cysteine Endopeptidases/immunology , Plant Diseases/immunology , Protein Kinases/immunology , Pseudomonas syringae/immunology , Receptors, Pattern Recognition/immunology , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Bacterial Proteins/immunology , Cysteine Endopeptidases/genetics , Flagellin/immunology , Immunity, Innate , Plant Diseases/microbiology , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Pseudomonas syringae/genetics , Pseudomonas syringae/physiology , Receptors, Pattern Recognition/genetics , Signal Transduction , Sumoylation
5.
Plant Reprod ; 29(4): 287-290, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27761651

ABSTRACT

KEY MESSAGE: SUMOylation and anther growth. During fertilization, stamen elongation needs to be synchronized with pistil growth. The phytohormone gibberellic acid (GA) promotes stamen growth by stimulating the degradation of growth repressing DELLA proteins. DELLA accumulation is negatively regulated by GAs through the ubiquitin-proteasome system. In Arabidopsis thaliana, a proportion of DELLAs is also conjugated to the small ubiquitin-like modifier (SUMO) protein, which stabilizes DELLAs. Increased DELLA levels occur in the SUMO protease-deficient OVERLY TOLERANT TO SALT 1 and 2 (ots1 ots2) double mutants, especially under salt stress conditions. Here, we show that OTS genes play a redundant role in the control of plant fertility under non-stress conditions. Mutants of ots1 ots2 display reduced fertility compared with the wild type, owing to reduced stamen elongation. Stamen growth, pollination rate and seed production are restored in ots1 ots2 della mutants, thus linking OTS1 function to the control of DELLA activity in the context of filament elongation. OTS levels appear to be developmentally regulated as OTS1/2 transcript upregulation during stamen development overlaps with GAs accumulations. We propose that OTS genes enable synchronization of stamen development by facilitating DELLA degradation at a specific developmental stage.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Cysteine Endopeptidases/metabolism , Cytoskeleton/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Cysteine Endopeptidases/genetics , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Gibberellins/metabolism , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Sumoylation , Ubiquitin/metabolism , Ubiquitins/genetics , Ubiquitins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...