Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 28947, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27364475

ABSTRACT

The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator's quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption (CPA). We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot (FP)/ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy and optical sensing schemes.

2.
Opt Lett ; 41(12): 2672-5, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27304260

ABSTRACT

In this Letter, we report the theoretical model and the experimental evidence of a mode-splitting cloning effect due to the resonant coupling between modes having different polarizations in weakly birefringent fiber Bragg grating (FBG) ring resonators. This modal coupling depends on the fiber birefringence and the FBG reflectivity. In the ideal case of the absence of birefringence, a single split-mode resonant structure can be observed in the resonator transmission spectrum due to the degeneracy removal of the two counter-propagating modes. In the presence of FBG birefringence, a secondary split doublet resulting in a clone of the initial one is generated. The described effect can be exploited for spectroscopic-sensing applications based on more complex split-mode dynamics.

3.
Opt Lett ; 41(7): 1420-2, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27192251

ABSTRACT

A fiber Bragg grating (FBG)-coupled ring laser sensor is demonstrated. In the proposed configuration the interrogating source, the sensing head and the readout instrument are integrated in a single fiber-optic device. An FBG inserted within a bidirectional fiber ring couples the two counterpropagating modes of the cavity, generating a splitting of the resonant wavelengths proportional to the FBG reflectivity. When the cavity gain is brought beyond threshold, the two peaks of the split resonances simultaneously lase, leading to a beat note in the emission spectrum whose frequency tracks any small shift of the FBG reflectivity spectrum. Such a beat note can be simply monitored by a frequency counter, without the need for an optical spectrometer, allowing to significantly reduce size and costs of the sensor setup. The sensing performance compares well to the state-of-the-art thermo-mechanical fiber sensors.

4.
Appl Opt ; 54(15): 4789-96, 2015 May 20.
Article in English | MEDLINE | ID: mdl-26192516

ABSTRACT

In this paper we investigate the possibility of using hybrid resonators based on fiber Bragg grating ring resonators (FBGRRs) and π-shifted FBGRRs (i.e., defective FBGRRs) as rotation sensitive elements for gyroscope applications. In particular, we model the conventional fiber Bragg grating (FBG) with the coupled mode theory by taking into account how the Sagnac effect, induced by the rotation, modifies the eigenvalues, the photonic band gap, and the spectral response of the FBG. Then, on the basis of the FBG model under rotation conditions, the spectral responses of the FBGRR and π-FBGRR have been evaluated, confirming that the Sagnac effect manifests itself with a spectral shift of the eigensolutions. This physical investigation can be exploited for opening new ways in the optical gyroscope platforms.

5.
Opt Lett ; 40(9): 2124-6, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25927801

ABSTRACT

The transmission spectrum of a ring resonator enclosing a π-phase shifted fiber Bragg grating (π-FBG) shows a spectral feature at the Bragg wavelength that is much sharper than resonance of the π-FBG alone, and that can be detected with a simple integrated cavity output technique. Hence, the resolution of any sensor based on the fitting of the π-FBG spectral profile can be largely improved by the proposed configuration at no additional fabrication costs and without altering the sensor robustness. A theoretical model shows that the resolution enhancement attainable in the proposed closed-loop geometry depends on the quality factor of the ring resonator. With a commercial grating in a medium-finesse ring, a spectral feature 12 times sharper than the π-FBG resonance is experimentally demonstrated. A larger enhancement is expected in a low-loss, polarization maintaining setup.

6.
Opt Lett ; 39(24): 6899-902, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25503025

ABSTRACT

We demonstrate a strain sensor with very high sensitivity in the static and low frequency regime based on a fiber ring cavity that includes a π phase-shifted fiber Bragg grating. The grating acts as a partial reflector that couples the two counter-propagating cavity modes, generating a splitting of the resonant frequencies. The presence of a sharp transition within the π phase-shifted fiber Bragg grating's spectral transmittance makes this frequency splitting extremely sensitive to length, temperature, and the refractive index of the fiber in the region where the grating is written. The splitting variations caused by small mechanical deformations of the grating are tracked in real time by interrogating a cavity resonance with a locked-carrier scanning-sideband technique. The measurable strain range and bandwidth are characterized, and a resolution of 320 pϵ/Hz(1/2) at 0 Hz is experimentally demonstrated, the highest achieved to date with a fiber Bragg grating sensor.

7.
Opt Express ; 21(24): 29435-41, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24514497

ABSTRACT

We report the theoretical description and the experimental demonstration of an optical resonator formed by inserting a Fiber Bragg Grating (FBG) in a closed fiber loop. The spectral characteristics of such a resonator strongly depend on the reflectivity of the FBG. In the wavelength region where the FBG reflectivity R is negligible, the system behaves like a conventional ring resonator. On the other hand, when R is not vanishing, a split-mode structure can be observed, associated to the degeneracy removal of two counterpropagating resonant modes. The magnitude of the mode splitting can be used to sense small variations of the FBG physical parameters, such as length, temperature or group index. An example of strain sensing with this setup is reported, showing that the mode splitting is sensitive to a mechanical strain applied to the FBG, while it is almost insensitive to a strain applied to any other point of the resonator. This peculiar feature allows to perform cavity-enhanced, local strain measurements with a reduced sensitivity to environmental perturbations, which represents an important improvement in the framework of the fiber-optic sensors.


Subject(s)
Algorithms , Equipment Failure Analysis/instrumentation , Fiber Optic Technology/instrumentation , Materials Testing/instrumentation , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Transducers , Elastic Modulus , Stress, Mechanical
8.
Opt Express ; 18(3): 2973-86, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20174126

ABSTRACT

Speed manipulation of optical pulses is a very attractive research challenge enabling next-generation high-capacity all-optical communication networks. Pulses can be effectively slowed by using different integrated optical structures such as coupled-resonator waveguiding structures or photonic crystal cavities. Fast light generation by means of integrated photonic devices is currently a quite unexplored research field in spite of its crucial importance for all-optical pulse processing. In this paper, we report on the first theoretical demonstration of fast light generation in an ultra-compact double vertical stacked ring resonator coupled to a bus waveguide. Periodic coupling between the two rings leads to splitting and recombining of symmetric and anti-symmetric resonant modes. Re-established degenerate modes can form when a symmetric and an anti-symmetric mode having different resonance order exhibit the same resonance wavelength. Under degenerate mode conditions, wide wavelength ranges where the group velocity is negative or larger than the speed of light in vacuum are generated. The paper proves how this physical effect can be exploited to design fast light resonant devices. Moreover, conditions are also derived to obtain slow light operation regime.

SELECTION OF CITATIONS
SEARCH DETAIL
...