Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 104(21): 211101, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20867082

ABSTRACT

We study black-hole binaries in the intermediate-mass-ratio regime 0.01≲q≲0.1 with a new technique that makes use of nonlinear numerical trajectories and efficient perturbative evolutions to compute waveforms at large radii for the leading and nonleading (ℓ, m) modes. As a proof-of-concept, we compute waveforms for q=1/10. We discuss applications of these techniques for LIGO and VIRGO data analysis and the possibility that our technique can be extended to produce accurate waveform templates from a modest number of fully nonlinear numerical simulations.

2.
Phys Rev Lett ; 98(23): 231102, 2007 Jun 08.
Article in English | MEDLINE | ID: mdl-17677894

ABSTRACT

Recent calculations of gravitational radiation recoil generated during black-hole binary mergers have reopened the possibility that a merged binary can be ejected even from the nucleus of a massive host galaxy. Here we report the first systematic study of gravitational recoil of equal-mass binaries with equal, but counteraligned, spins parallel to the orbital plane. Such an orientation of the spins is expected to maximize the recoil. We find that recoil velocity (which is perpendicular to the orbital plane) varies sinusoidally with the angle that the initial spin directions make with the initial linear momenta of each hole and scales up to a maximum of approximately 4000 km s-1 for maximally rotating holes. Our results show that the amplitude of the recoil velocity can depend sensitively on spin orientations of the black holes prior to merger.

SELECTION OF CITATIONS
SEARCH DETAIL
...