Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(3)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535644

ABSTRACT

Direct metal laser deposition (DMLD) is an additive manufacturing technique suitable for coating and repair, which has been gaining a growing interest in 3D manufacturing applications in recent years. However, its diffusion in the manufacturing industry is still limited due to technical challenges to be solved-both the sub-optimal quality of the final parts and the low repeatability of the process make the DMLD inadequate for high-value applications requiring high-performance standards. Thus, real-time monitoring and process control are indispensable requirements for improving the DMLD process. The aim of this study was the optimization of deposition strategies for the fabrication of thin walls in AISI 316L stainless steel. For this purpose, a coaxial monitoring system and image processing algorithms were employed to study the melt pool geometry. The comparison tests carried out highlighted how the region-based active contour algorithm used for image processing is more efficient and stable than others covered in the literature. The results allowed the identification of the best deposition strategy. Therefore, it is shown how this monitoring methodology proved to be suitable for designing and implementing the right building strategy for DMLD manufactured 3D components. A fast and stable image processing method was achieved, which can be considered for future closed-loop monitoring in real-time applications.

2.
Materials (Basel) ; 13(11)2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32545202

ABSTRACT

Direct laser metal deposition (DLMD) is an innovative additive technology becoming of key importance in the field of repairing applications for industrial and aeronautical components. The performance of the repaired components is highly related to the intrinsic presence of defects, such as cracks, porosity, excess of dilution or debonding between clad and substrate. Usually, the quality of depositions is evaluated through destructive tests and microstructural analysis. Clearly, such methodologies are inapplicable in-process or on repaired components. The proposed work aims to evaluate the capability of ultrasonic techniques to perform the mechanical characterization of additive manufactured (AM) components. The tested specimens were manufactured by DLMD using a nickel-based superalloy deposited on an AISI 304 substrate. Ultrasonic goniometric immersion tests were performed in order to mechanical characterize the substrate and the new material obtained by AM process, consisting of the substrate and the deposition. Furthermore, the relationship was evaluated between the acoustic and the mechanical properties of the AM components and the deposition process parameters and the geometrical characteristics of multiclad depositions, respectively. Finally, the effectiveness of the proposed non-destructive experimental approach for the characterization of the created deposition anomalies has been investigated.

3.
Materials (Basel) ; 12(15)2019 Jul 27.
Article in English | MEDLINE | ID: mdl-31357607

ABSTRACT

The selective laser melting process is a growing technology for the manufacture of parts with very complex geometry. However, not all materials are suitable for this process, involving rapid localized melting and solidification. Tungsten has difficulties due to the high melting temperature. This study focuses on the possibility of processing a WC/Co/Cr composite powder using selective laser melting. Samples were fabricated and characterized in terms of density, defects, microstructure and hardness. Tests were conducted with hatch spacing of 120 µm and process speed of 40 mm/s. A constant laser power of 100 W and a powder layer thickness of 30 µm were used. A relative density of 97.53%, and therefore a low porosity, was obtained at an energy density of 12.5 J/mm2. Microscopic examination revealed the presence of small cracks and a very heterogeneous distribution of the grain size.

4.
Materials (Basel) ; 12(8)2019 Apr 20.
Article in English | MEDLINE | ID: mdl-31010020

ABSTRACT

With the development of additive manufacturing, the building of new categories of lightweight structures such as random foams have been offered. Nevertheless, given the complexity of the required parts, macroscopic defects may result or the process may even fail. Therefore, proper actions must be taken at the design stage. In this paper, a method of design for additive manufacturing (DfAM) to build metal random foam structures is proposed. Namely, a procedure is suggested to generate a structure that has interconnected porosity. This procedure is based on the aimed fractional density and several technical requirements, and then the geometry is optimized and meshed. To validate the algorithm, a test article consisting of a metal cylinder with spherical random pores ranging from 1 to 6 mm in diameter with a resulting fractional density of 40 ± 2% has been conceived and manufactured by means of laser powder bed fusion (LPBF). On the basis of the outcome of the manufacturing process, crucial information has been gathered to update the algorithm.

5.
Micromachines (Basel) ; 9(7)2018 Jun 27.
Article in English | MEDLINE | ID: mdl-30424257

ABSTRACT

Laser milling is a micro-machining process that uses a laser beam as a tool to remove material through the layer-by-layer ablation mechanism. Generally in laser ablation, the quality of parts is reduced by melt accretions and thermal damage; therefore, this problem is reduced with shorter pulse duration, although ablation efficiency decreases as well. Thus, laser ablation in the nanosecond range still offers a good compromise between process quality and efficiency. Therefore, laser milling with nanosecond laser ablation requires an accurate study to reduce geometric defects induced by the process. The aim of this paper was to study the shape geometry and roughness of Ti6Al4V parts fabricated by laser milling using a nanosecond Nd:YAG laser source. The impact of the laser processing parameters on machining outcomes was studied in order to determine the optimized processing conditions for reducing geometrical defects and improving surface quality. In particular, the influence of average laser power, frequency, and scanning speed was investigated. The geometry of micro-parts was revealed using a 3D digitizing system, the Optimet Mini Conoscan 4000, which combines a non-contact, single-point measuring sensor based on conoscopic holography technology. The use of this measurement technology yielded complete information of the shape geometry and dimensions of the built parts. In addition, the roughness of manufactured surfaces was assessed to complete the analysis.

6.
Materials (Basel) ; 6(12): 5923-5941, 2013 Dec 18.
Article in English | MEDLINE | ID: mdl-28788430

ABSTRACT

Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

SELECTION OF CITATIONS
SEARCH DETAIL
...