Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5703, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977662

ABSTRACT

Explaining predictions for drug repositioning with biological knowledge graphs is a challenging problem. Graph completion methods using symbolic reasoning predict drug treatments and associated rules to generate evidence representing the therapeutic basis of the drug. Yet the vast amounts of generated paths that are biologically irrelevant or not mechanistically meaningful within the context of disease biology can limit utility. We use a reinforcement learning based knowledge graph completion model combined with an automatic filtering approach that produces the most relevant rules and biological paths explaining the predicted drug's therapeutic connection to the disease. In this work we validate the approach against preclinical experimental data for Fragile X syndrome demonstrating strong correlation between automatically extracted paths and experimentally derived transcriptional changes of selected genes and pathways of drug predictions Sulindac and Ibudilast. Additionally, we show it reduces the number of generated paths in two case studies, 85% for Cystic fibrosis and 95% for Parkinson's disease.


Subject(s)
Drug Discovery , Drug Repositioning , Parkinson Disease , Humans , Drug Discovery/methods , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Drug Repositioning/methods , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Sulindac/pharmacology , Sulindac/therapeutic use , Animals , Algorithms
2.
eNeuro ; 9(5)2022.
Article in English | MEDLINE | ID: mdl-36240080

ABSTRACT

Dravet syndrome (DS) is a catastrophic form of pediatric epilepsy mainly caused by noninherited mutations in the SCN1A gene. DS patients suffer severe and life-threatening focal and generalized seizures which are often refractory to available anti-seizure medication. Antisense oligonucleotides (ASOs) based approaches may offer treatment opportunities in DS. MicroRNAs are short noncoding RNAs that play a key role in brain structure and function by post-transcriptionally regulating gene expression, including ion channels. Inhibiting miRNA-134 (miR-134) using an antimiR ASO (Ant-134) has been shown to reduce evoked seizures in juvenile and adult mice and reduce epilepsy development in models of focal epilepsy. The present study investigated the levels of miR-134 and whether Ant-134 could protect against hyperthermia-induced seizures, spontaneous seizures and mortality (SUDEP) in F1.Scn1a(+/-)tm1kea mice. At P17, animals were intracerebroventricular injected with 0.1-1 nmol of Ant-134 and subject to a hyperthermia challenge at postnatal day (P)18. A second cohort of P21 F1.Scn1a(+/-)tm1kea mice received Ant-134 and were followed by video and EEG monitoring until P28 to track the incidence of spontaneous seizures and SUDEP. Hippocampal and cortical levels of miR-134 were similar between wild-type (WT) and F1.Scn1a(+/-)tm1kea mice. Moreover, Ant-134 had no effect on hyperthermia-induced seizures, spontaneous seizures and SUDEP incidence were unchanged in Ant-134-treated DS mice. These findings suggest that targeting miR-134 does not have therapeutic applications in DS.


Subject(s)
Epilepsies, Myoclonic , Epilepsy , MicroRNAs , Sudden Unexpected Death in Epilepsy , Animals , Disease Models, Animal , Epilepsies, Myoclonic/drug therapy , Epilepsies, Myoclonic/genetics , Epilepsy/complications , Epileptic Syndromes , Mice , MicroRNAs/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use
3.
Mol Ther Nucleic Acids ; 28: 514-529, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35592499

ABSTRACT

Angelman syndrome (AS) is a severe neurodevelopmental disorder featuring ataxia, cognitive impairment, and drug-resistant epilepsy. AS is caused by mutations or deletion of the maternal copy of the paternally imprinted UBE3A gene, with current precision therapy approaches focusing on re-expression of UBE3A. Certain phenotypes, however, are difficult to rescue beyond early development. Notably, a cluster of microRNA binding sites was reported in the untranslated Ube3a1 transcript, including for miR-134, suggesting that AS may be associated with microRNA dysregulation. Here, we report levels of miR-134 and key targets are normal in the hippocampus of mice carrying a maternal deletion of Ube3a (Ube3a m-/p+ ). Nevertheless, intracerebroventricular injection of an antimiR oligonucleotide inhibitor of miR-134 (Ant-134) reduced audiogenic seizure severity over multiple trials in 21- and 42-day-old AS mice. Interestingly, Ant-134 also improved distance traveled and center crossings of AS mice in the open-field test. Finally, we show that silencing miR-134 can upregulate targets of miR-134 in neurons differentiated from Angelman patient-derived induced pluripotent stem cells. These findings indicate that silencing miR-134 and possibly other microRNAs could be useful to treat clinically relevant phenotypes with a later developmental window in AS.

4.
Sci Rep ; 11(1): 340, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431894

ABSTRACT

MicroRNAs are short non-coding RNAs that negatively regulate protein levels and perform important roles in establishing and maintaining neuronal network function. Previous studies in adult rodents have detected upregulation of microRNA-134 after prolonged seizures (status epilepticus) and demonstrated that silencing microRNA-134 using antisense oligonucleotides, termed antagomirs, has potent and long-lasting seizure-suppressive effects. Here we investigated whether targeting microRNA-134 can reduce or delay acute seizures in the immature brain. Status epilepticus was induced in 21 day-old (P21) male mice by systemic injection of 5 mg/kg kainic acid. This triggered prolonged electrographic seizures and select bilateral neuronal death within the CA3 subfield of the hippocampus. Expression of microRNA-134 and functional loading to Argonaute-2 was not significantly changed in the hippocampus after seizures in the model. Nevertheless, when levels of microRNA-134 were reduced by prior intracerebroventricular injection of an antagomir, kainic acid-induced seizures were delayed and less severe and mice displayed reduced neuronal death in the hippocampus. These studies demonstrate targeting microRNA-134 may have therapeutic applications for the treatment of seizures in children.


Subject(s)
Antagomirs/pharmacology , Kainic Acid/pharmacology , MicroRNAs/genetics , Seizures/chemically induced , Seizures/genetics , Animals , Antagomirs/therapeutic use , Brain/drug effects , Brain/metabolism , Dose-Response Relationship, Drug , Male , Mice , Seizures/drug therapy
5.
Proc Natl Acad Sci U S A ; 117(27): 15977-15988, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32581127

ABSTRACT

Temporal lobe epilepsy is the most common drug-resistant form of epilepsy in adults. The reorganization of neural networks and the gene expression landscape underlying pathophysiologic network behavior in brain structures such as the hippocampus has been suggested to be controlled, in part, by microRNAs. To systematically assess their significance, we sequenced Argonaute-loaded microRNAs to define functionally engaged microRNAs in the hippocampus of three different animal models in two species and at six time points between the initial precipitating insult through to the establishment of chronic epilepsy. We then selected commonly up-regulated microRNAs for a functional in vivo therapeutic screen using oligonucleotide inhibitors. Argonaute sequencing generated 1.44 billion small RNA reads of which up to 82% were microRNAs, with over 400 unique microRNAs detected per model. Approximately half of the detected microRNAs were dysregulated in each epilepsy model. We prioritized commonly up-regulated microRNAs that were fully conserved in humans and designed custom antisense oligonucleotides for these candidate targets. Antiseizure phenotypes were observed upon knockdown of miR-10a-5p, miR-21a-5p, and miR-142a-5p and electrophysiological analyses indicated broad safety of this approach. Combined inhibition of these three microRNAs reduced spontaneous seizures in epileptic mice. Proteomic data, RNA sequencing, and pathway analysis on predicted and validated targets of these microRNAs implicated derepressed TGF-ß signaling as a shared seizure-modifying mechanism. Correspondingly, inhibition of TGF-ß signaling occluded the antiseizure effects of the antagomirs. Together, these results identify shared, dysregulated, and functionally active microRNAs during the pathogenesis of epilepsy which represent therapeutic antiseizure targets.


Subject(s)
Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/metabolism , MicroRNAs/drug effects , MicroRNAs/metabolism , Oligonucleotides, Antisense/pharmacology , Seizures/drug therapy , Seizures/metabolism , Animals , Antagomirs/pharmacology , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Biomarkers , Disease Models, Animal , Epilepsy , Female , Hippocampus/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Proteomics , Rats , Rats, Sprague-Dawley , Seizures/genetics , Systems Analysis , Up-Regulation/drug effects
6.
Mol Neurodegener ; 12(1): 21, 2017 02 24.
Article in English | MEDLINE | ID: mdl-28235423

ABSTRACT

BACKGROUND: The ubiquitin-proteasome-system (UPS) is the major intracellular pathway leading to the degradation of unwanted and/or misfolded soluble proteins. This includes proteins regulating cellular survival, synaptic plasticity and neurotransmitter signaling; processes controlling excitability thresholds that are altered by epileptogenic insults. Dysfunction of the UPS has been reported to occur in a brain region- and cell-specific manner and contribute to disease progression in acute and chronic brain diseases. Prolonged seizures, status epilepticus, may alter UPS function but there has been no systematic attempt to map when and where this occurs in vivo or to determine the consequences of proteasome inhibition on seizure-induced brain injury. METHOD: To determine whether seizures lead to an impairment of the UPS, we used a mouse model of status epilepticus whereby seizures are triggered by an intra-amygdala injection of kainic acid. Status epilepticus in this model causes cell death in selected brain areas, in particular the ipsilateral CA3 subfield of the hippocampus, and the development of epilepsy after a short latent period. To monitor seizure-induced dysfunction of the UPS we used a UPS inhibition reporter mouse expressing the ubiquitin fusion degradation substrate ubiquitinG76V-green fluorescent protein. Treatment with the specific proteasome inhibitor epoxomicin was used to establish the impact of proteasome inhibition on seizure-induced pathology. RESULTS AND CONCLUSIONS: Our studies show that status epilepticus induced by intra-amygdala kainic acid causes select spatio-temporal UPS inhibition which is most evident in damage-resistant regions of the hippocampus, including CA1 pyramidal and dentate granule neurons then appears later in astrocytes. In support of this exerting a beneficial effect, injection of mice with the proteasome inhibitor epoxomicin protected the normally vulnerable hippocampal CA3 subfield from seizure-induced neuronal death in the model. These studies reveal brain region- and cell-specific UPS impairment occurs after seizures and suggest UPS inhibition can protect against seizure-induced brain damage. Identifying networks or pathways regulated through the proteasome after seizures may yield novel target genes for the treatment of seizure-induced cell death and possibly epilepsy.


Subject(s)
Adaptation, Physiological/physiology , Hippocampus/physiopathology , Proteasome Endopeptidase Complex/physiology , Status Epilepticus/physiopathology , Animals , Blotting, Western , Disease Models, Animal , Fluorescent Antibody Technique , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Real-Time Polymerase Chain Reaction , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...