Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 219(Pt 6): 797-804, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26985051

ABSTRACT

As the use of pharmaceuticals and personal care products (PPCPs) continues to rise, these compounds enter the environment in increasing frequency. One such PPCP, fluoxetine, has been found in detectable amounts in aquatic ecosystems worldwide, where it may interfere with the behavior of exposed organisms. Fluoxetine exposure has been found to influence boldness and exploration in a range of fish species; however, how it might alter behavior in multiple contexts or over time is rarely examined. To this end, the effects of fluoxetine on boldness over time were studied in male Siamese fighting fish. Three different groups of males (0, 0.5 and 5 µg l(-1) fluoxetine) were tested in multiple boldness assays (empty tank, novel environment and shoal) once a week for 3 weeks to collect baseline measures and then at three different time points post-exposure. The effects of these varying exposure amounts on behavior were then examined for overall response, consistency and across-context correlations. Unexposed males were bolder in all contexts, were more consistent within a context, and had stronger between-context correlations than exposed males. Fluoxetine had dose-dependent effects on behavior, as males that received the higher dose exhibited greater behavioral effects. This study stresses the potential fitness consequences of fluoxetine exposure and suggests that examining behavioral effects of PPCPs under different dosing regimens and in multiple contexts is important to gain an increased understanding of how exposure affects behavior.


Subject(s)
Behavior, Animal/drug effects , Competitive Behavior/drug effects , Fluoxetine/toxicity , Perciformes/physiology , Selective Serotonin Reuptake Inhibitors/toxicity , Water Pollutants, Chemical/toxicity , Aggression/drug effects , Animals , Male
2.
Ecotoxicology ; 25(1): 69-79, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26462842

ABSTRACT

The present study examined the effects of the selective serotonin reuptake inhibitor, fluoxetine, on the behavior of female Siamese fighting fish, Betta splendens, in three different boldness assays (Empty Tank, Novel Environment, Social Tendency). When females were unexposed to fluoxetine, boldness was consistent within a context and correlated across assays. Fluoxetine exposure affected behavior within and among individuals on multiple levels. Exposure reduced overall boldness levels, made females behave in a less consistent manner, and significantly reduced correlations over time and across contexts. Fluoxetine exerted its effects on female Betta splendens behavior in a dose-dependent fashion and these effects persisted even after females were housed in clean water. If fluoxetine exposure impacts behaviors such as exploration that are necessary to an individual's success, this may yield evolutionary consequences. In conclusion, the results show that fluoxetine exposure alters behavior beyond the level of overall response and highlights the importance of studying the behavioral effects of inadvertent pharmaceutical exposure in multiple contexts and with different dosing regimes.


Subject(s)
Aggression/drug effects , Fluoxetine/toxicity , Perciformes/physiology , Selective Serotonin Reuptake Inhibitors/toxicity , Water Pollutants, Chemical/toxicity , Animals , Dose-Response Relationship, Drug , Female
3.
Horm Behav ; 66(4): 577-84, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25161058

ABSTRACT

The role of anthropogenic sources in generating, maintaining, and influencing behavioral syndromes has recently been identified as an important area of future research. Endocrine disrupting chemicals are prevalent and persistent in aquatic ecosystems worldwide. These chemicals are known to have marked effects on the morphology and behavior of exposed individuals and, as such, may serve as a potential influence on behavioral syndromes. However, both the effects of exposure on behaviors beyond courtship and aggression and how exposure might affect behavioral variation at the individual level are understudied. To address this question, we examined boldness behavior in female Siamese fighting fish in three different assays (Novel Environment, Empty Tank, Shoaling) both before and after they were exposed to the estrogen mimic, 17α-ethinylestradiol (EE2). EE2 influences courtship, aggression, and boldness in males of this species but its effects have not been examined in females, to our knowledge. Females were tested multiple times in each assay before and after exposure so that behavioral consistency could be examined. A behavioral syndrome for boldness and activity level occurred across the three assays. The reductions in boldness and loss of the behavioral syndrome that resulted from EE2 exposure were surprising and suggest that the effects of EE2 exposure on female behavior and physiology should be examined more frequently. This study is one of the first to examine the effects of EE2 in females as well as on correlated behaviors and emphasizes the importance of examining the effects of endocrine disrupting chemicals on individual behavioral variation and consistency.


Subject(s)
Aggression/drug effects , Behavior, Animal/drug effects , Competitive Behavior/drug effects , Ethinyl Estradiol/pharmacology , Exploratory Behavior/drug effects , Perciformes , Animals , Competitive Behavior/physiology , Courtship/psychology , Endocrine Disruptors/pharmacology , Female , Perciformes/physiology , Random Allocation , Water Pollutants, Chemical/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...