Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 6419, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28743980

ABSTRACT

It is of paramount importance to improve the control over large area growth of high quality molybdenum disulfide (MoS2) and other types of 2D dichalcogenides. Such atomically thin materials have great potential for use in electronics, and are thought to make possible the first real applications of spintronics. Here in, a facile and reproducible method of producing wafer scale atomically thin MoS2 layers has been developed using the incorporation of a chelating agent in a common organic solvent, dimethyl sulfoxide (DMSO). Previously, solution processing of a MoS2 precursor, ammonium tetrathiomolybdate ((NH4)2MoS4), and subsequent thermolysis was used to produce large area MoS2 layers. Our work here shows that the use of ethylenediaminetetraacetic acid (EDTA) in DMSO exerts superior control over wafer coverage and film thickness, and the results demonstrate that the chelating action and dispersing effect of EDTA is critical in growing uniform films. Raman spectroscopy, photoluminescence (PL), x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and high-resolution scanning transmission electron microscopy (HR-STEM) indicate the formation of homogenous few layer MoS2 films at the wafer scale, resulting from the novel chelant-in-solution method.

2.
Sci Rep ; 6: 33050, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27713474

ABSTRACT

Silicon is produced in a variety of ways as an ultra-high capacity lithium-ion battery (LIB) anode material. The traditional carbothermic reduction process required is expensive and energy-intensive; in this work, we use an efficient magnesiothermic reduction to convert the silica-based frustules within diatomaceous earth (diatomite, DE) to nanosilicon (nanoSi) for use as LIB anodes. Polyacrylic acid (PAA) was used as a binder for the DE-based nanoSi anodes for the first time, being attributed for the high silicon utilization under high current densities (up to 4C). The resulting nanoSi exhibited a high BET specific surface area of 162.6 cm2 g-1, compared to a value of 7.3 cm2 g-1 for the original DE. DE contains SiO2 architectures that make ideal bio-derived templates for nanoscaled silicon. The DE-based nanoSi anodes exhibit good cyclability, with a specific discharge capacity of 1102.1 mAh g-1 after 50 cycles at a C-rate of C/5 (0.7 A gSi-1) and high areal loading (2 mg cm-2). This work also demonstrates the fist rate capability testing for a DE-based Si anode; C-rates of C/30 - 4C were tested. At 4C (14.3 A gSi-1), the anode maintained a specific capacity of 654.3 mAh g-1 - nearly 2x higher than graphite's theoretical value (372 mAh g-1).

3.
Sci Rep ; 5: 14575, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26415917

ABSTRACT

Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents.


Subject(s)
Agaricus/chemistry , Carbon/chemistry , Electric Power Supplies , Lithium/chemistry , Nanotubes, Carbon/chemistry , Biomass , Electrochemical Techniques , Electrodes , Hot Temperature , Nanotubes, Carbon/ultrastructure , Oxygen/chemistry , Porosity
4.
Chem Commun (Camb) ; 51(56): 11213-6, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26077828

ABSTRACT

Here, we report the first demonstration of atomically thin vertically stacked MoS2/WS2 heterostructures, achieved via a two-step chemical vapour deposition (CVD) growth process. Highly ordered stacking of heterostructure domains and patterned defects have been observed. Computations based on first principles have been performed to understand observed enhanced photoluminescence of the heterostructure.

5.
Nanoscale ; 7(16): 7051-5, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25712745

ABSTRACT

For the first time, SiO2-coated sulfur particles (SCSPs) were fabricated via a facile two-step wet chemical process for application as a novel lithium-sulfur cathode material. With the addition of mildly reduced graphene oxide (mrGO), SCSPs demonstrate even greater cycling stability, maintaining over 700 mA h g(-1) after the 50(th) cycle.

SELECTION OF CITATIONS
SEARCH DETAIL
...