Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36765535

ABSTRACT

The tumor microenvironment is recognized as performing a critical role in tumor initiation, progression, and metastasis of many cancers, including breast cancer. The breast cancer microenvironment is a complex mixture of cells consisting of tumor cells, immune cells, fibroblasts, and vascular cells, as well as noncellular components, such as extracellular matrix and soluble products. The interactions between the tumor cells and the tumor microenvironment modulate tumor behavior and affect the responses of cancer patients to therapies. The interactions between tumor cells and the surrounding environment can include direct cell-to-cell contact or through intercellular signals over short and long distances. The intricate functions of the tumor microenvironment in breast cancer have led to increased research into the tumor microenvironment as a possible therapeutic target of breast cancer. Though expanded research has shown the clear importance of the tumor microenvironment, there is little focus on how normal mammary epithelial cells can affect breast cancer cells. Previous studies have shown the normal breast microenvironment can manipulate non-mammary stem cells and tumor-derived cancer stem cells to participate in normal mammary gland development. The tumorigenic cells lose their tumor-forming capacity and are "redirected" to divide into "normal", non-tumorigenic cells. This cellular behavior is "cancer cell redirection". This review will summarize the current literature on cancer cell redirection and the normal mammary microenvironment's influence on breast cancer cells.

2.
ACS Nano ; 8(8): 8255-65, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25093751

ABSTRACT

Graphene has attracted a lot of attention for ultracapacitor electrodes because of its high electrical conductivity, high surface area, and superb chemical stability. However, poor volumetric capacitive performance of typical graphene-based electrodes has hindered their practical applications because of the extremely low density. Herein we report a scalable synthesis method of holey graphene (h-Graphene) in a single step without using any catalysts or special chemicals. The film made of the as-synthesized h-Graphene exhibited relatively strong mechanical strength, 2D hole morphology, high density, and facile processability. This scalable one-step synthesis method for h-Graphene is time-efficient, cost-efficient, environmentally friendly, and generally applicable to other two-dimensional materials. The ultracapacitor electrodes based on the h-Graphene show a remarkably improved volumetric capacitance with about 700% increase compared to that of regular graphene electrodes. Modeling on individual h-Graphene was carried out to understand the excellent processability and improved ultracapacitor performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...