Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Urol Oncol ; 41(11): 454.e9-454.e16, 2023 11.
Article in English | MEDLINE | ID: mdl-37734979

ABSTRACT

BACKGROUND: There is a clinical need to identify patients with an elevated PSA who would benefit from prostate biopsy due to the presence of clinically significant prostate cancer (CSCaP). We have previously reported the development of the MiCheck® Test for clinically significant prostate cancer. Here, we report MiCheck's further development and incorporation of the Roche Cobas standard clinical chemistry analyzer. OBJECTIVES: To further develop and adapt the MiCheck® Prostate test so it can be performed using a standard clinical chemistry analyzer and characterize its performance using the MiCheck-01 clinical trial sample set. DESIGN, SETTINGS, AND PARTICIPANTS: About 358 patient samples from the MiCheck-01 US clinical trial were used for the development of the MiCheck® Prostate test. These consisted of 46 controls, 137 non-CaP, 62 non-CSCaP, and 113 CSCaP. METHODS: Serum analyte concentrations for cellular growth factors were determined using custom-made Luminex-based R&D Systems multi-analyte kits. Analytes that can also be measured using standard chemistry analyzers were examined for their ability to contribute to an algorithm with high sensitivity for the detection of clinically significant prostate cancer. Samples were then re-measured using a Roche Cobas analyzer for development of the final algorithm. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Logistic regression modeling with Monte Carlo cross-validation was used to identify Human Epidydimal Protein 4 (HE4) as an analyte able to significantly improve the algorithm specificity at 95% sensitivity. A final model was developed using analyte measurements from the Cobas analzyer. RESULTS: The MiCheck® logistic regression model was developed and consisted of PSA, %free PSA, DRE, and HE4. The model differentiated clinically significant cancer from no cancer or not-clinically significant cancer with AUC of 0.85, sensitivity of 95%, and specificity of 50%. Applying the MiCheck® test to all evaluable 358 patients from the MiCheck-01 study demonstrated that up to 50% of unnecessary biopsies could be avoided while delaying diagnosis of only 5.3% of Gleason Score (GS) ≥3+4 cancers, 1.8% of GS≥4+3 cancers and no cancers of GS 8 to 10. CONCLUSIONS: The MiCheck® Prostate test identifies clinically significant prostate cancer with high sensitivity and negative predictive value (NPV). It can be performed in a clinical laboratory using a Roche Cobas clinical chemistry analyzer. The MiCheck® Prostate test could assist in reducing unnecessary prostate biopsies with a marginal number of patients experiencing a delayed diagnosis.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostate/pathology , Prostate-Specific Antigen , Prostatic Neoplasms/pathology , Biopsy , Predictive Value of Tests
2.
Mol Pharm ; 20(3): 1549-1563, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36602058

ABSTRACT

Glioblastoma (GBM) is the most aggressive form of primary brain cancer, accounting for about 85% of all primary central nervous system (CNS) tumors. With standard treatment strategies like surgery, radiation, and chemotherapy, the median survival time of patients with GBM is only 12-15 months from diagnosis. The poor prognosis of GBM is due to a very high tumor recurrence rate following initial treatment, indicating a dire need for improved diagnostic and therapeutic alternatives for this disease. Antibody-based immunotheranostics holds great promise in treating GBM, combining the theranostic applications of radioisotopes and target-specificity of antibodies. In this study, we developed and validated antibody-based positron emission tomography (PET) tracers targeting the heparan sulfate proteoglycan, glypican-1 (GPC-1), for noninvasive detection of disease using diagnostic molecular imaging. GPC-1 is overexpressed in multiple solid tumor types, including GBM, and is a promising biomarker for novel immunotheranostics. Here, we investigate zirconium-89 (89Zr)-conjugated Miltuximab (a clinical stage anti-GPC-1 monoclonal antibody developed by GlyTherix, Ltd.) and engineered fragments for their potential as immuno-PET tracers to detect GPC-1positive GBM tumors in preclinical models. We explore the effects of molecular size, avidity, and Fc-domain on the pharmacokinetics and biodistribution in vivo, by comparing in parallel the full-length antibody (Miltuximab), Fab'2, Fab, and single-chain variable fragment (scFv) formats. High radiolabeling efficiency (>95%) was demonstrated by all the formats and the stability post-radiolabeling was higher for larger constructs of Miltuximab and the Fab. Receptor-mediated internalization of all 89Zr-labeled formats was observed in a human GBM cell line in vitro, while full-length Miltuximab demonstrated the highest tumor retention (5.7 ± 0.94% ID/g, day-9 postinjection (p.i.)) and overall better tumor-to-background ratios than the smaller Fc-less formats. Results from in vivo PET image quantification and ex vivo scintillation counting were highly correlated. Altogether, 89Zr-DFO-Miltuximab appears to be an effective immuno-PET imaging agent for detecting GPC-1positive tumors such as GBM and the current results support utility of the Fc containing whole mAb format over smaller antibody fragments for this target.


Subject(s)
Glioblastoma , Glypicans , Humans , Tissue Distribution , Antibodies, Monoclonal/pharmacokinetics , Neoplasm Recurrence, Local , Positron-Emission Tomography/methods , Zirconium , Immunoglobulin Fragments , Cell Line, Tumor
3.
J Nanobiotechnology ; 20(1): 446, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36242076

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal cancers worldwide with high mortality, which is mainly due to the lack of reliable biomarkers for PDAC diagnosis/prognosis in the early stages and effective therapeutic strategies for the treatment. Cancer-derived small extracellular vesicles (sEVs), which carry various messages and signal biomolecules (e.g. RNAs, DNAs, proteins, lipids, and glycans) to constitute the key features (e.g. genetic and phenotypic status) of cancer cells, are regarded as highly competitive non-invasive biomarkers for PDAC diagnosis/prognosis. Additionally, new insights on the biogenesis and molecular functions of cancer-derived sEVs pave the way for novel therapeutic strategies based on cancer-derived sEVs for PDAC treatment such as inhibition of the formation or secretion of cancer-derived sEVs, using cancer-derived sEVs as drug carriers and for immunotherapy. This review provides a comprehensive overview of the most recent scientific and clinical research on the discovery and involvement of key molecules in cancer-derived sEVs for PDAC diagnosis/prognosis and strategies using cancer-derived sEVs for PDAC treatment. The current limitations and emerging trends toward clinical application of cancer-derived sEVs in PDAC diagnosis/prognosis and treatment have also been discussed.


Subject(s)
Carcinoma, Pancreatic Ductal , Extracellular Vesicles , Pancreatic Neoplasms , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/therapy , Drug Carriers/therapeutic use , Extracellular Vesicles/metabolism , Humans , Lipids , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/therapy , Prognosis , Pancreatic Neoplasms
4.
Anal Methods ; 14(23): 2255-2265, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35612592

ABSTRACT

Circulating pancreatic ductal adenocarcinoma (PDAC) derived small extracellular vesicles (sEVs) are nano-sized membranous vesicles secreted from PDAC cells and released into surrounding body fluids, such as blood. The use of plasma-derived sEVs for cancer diagnosis is particularly appealing in biomedical research because the sEVs reflect some key features (e.g. genetic and phenotypic status) related to the organs from which they originate. For example, the surface membrane proteins and their expression level on sEVs were reported to be related to the presence and progression of PDAC. However, difficulty in sEVs isolation and lack of ultrasensitive assays for simultaneous analysis of multiple protein biomarkers on patient plasma-derived sEVs hinder their application in the clinic. In our previous study, we have demonstrated the application of magnetic beads (MBs) and surface-enhanced Raman scattering (SERS) assay for phenotypic analysis of cancer cells-derived sEVs using different cell lines. To further demonstrate the clinical application of the proposed assay, we have profiled the sEVs' phenotypes (relative expression of biomarker Glypican 1, EpCAM and CD44V6) of healthy donors and PDAC patients to enable simultaneous detection of multiple surface membrane proteins on plasma-derived sEVs. We discovered that the PDAC sEVs' phenotype signatures had high accuracy for PDAC diagnosis (100%) and showed strong correlation with cancer stages, which were further validated by the imaging techniques (e.g. computerized tomography and magnetic resonance imaging) and also the correlation of cancer stages with CA19-9 (gold standard biomarker) and the sEVs' phenotype signatures. The present proof-of-concept study thus provides an initial investigation of using the proposed SERS assay for PDAC diagnosis and early cancer stage prediction in the clinic.


Subject(s)
Carcinoma, Pancreatic Ductal , Extracellular Vesicles , Pancreatic Neoplasms , Biomarkers, Tumor , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Extracellular Vesicles/genetics , Extracellular Vesicles/pathology , Humans , Membrane Proteins/genetics , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phenotype , Pancreatic Neoplasms
5.
Cytometry A ; 101(5): 400-410, 2022 05.
Article in English | MEDLINE | ID: mdl-34585823

ABSTRACT

Sensitive and quantitative detection of molecular biomarkers is crucial for the early diagnosis of diseases like metabolic syndrome and cancer. Here we present a single-molecule sandwich immunoassay by imaging the number of single nanoparticles to diagnose aggressive prostate cancer. Our assay employed the photo-stable upconversion nanoparticles (UCNPs) as labels to detect the four types of circulating antigens in blood circulation, including glypican-1 (GPC-1), leptin, osteopontin (OPN), and vascular endothelial growth factor (VEGF), as their serum concentrations indicate aggressive prostate cancer. Under a wide-field microscope, a single UCNP doped with thousands of lanthanide ions can emit sufficiently bright anti-Stokes' luminescence to become quantitatively detectable. By counting every single streptavidin-functionalized UCNP which specifically labeled on each sandwich immune complex across multiple fields of views, we achieved the Limit of Detection (LOD) of 0.0123 ng/ml, 0.2711 ng/ml, 0.1238 ng/ml, and 0.0158 ng/ml for GPC-1, leptin, OPN and VEGF, respectively. The serum circulating level of GPC-1, leptin, OPN, and VEGF in a mixture of 10 healthy normal human serum was 25.17 ng/ml, 18.04 ng/ml, 11.34 ng/ml, and 1.55 ng/ml, which was within the assay dynamic detection range for each analyte. Moreover, a 20% increase of GPC-1 and OPN was observed by spiking the normal human serum with recombinant antigens to confirm the accuracy of the assay. We observed no cross-reactivity among the four biomarker analytes, which eliminates the false positives and enhances the detection accuracy. The developed single upconversion nanoparticle-assisted single-molecule assay suggests its potential in clinical usage for prostate cancer detection by monitoring tiny concentration differences in a panel of serum biomarkers.


Subject(s)
Nanoparticles , Prostatic Neoplasms , Biomarkers , Humans , Leptin , Male , Prostatic Neoplasms/diagnosis , Vascular Endothelial Growth Factor A
6.
Ther Adv Med Oncol ; 13: 17588359211022918, 2021.
Article in English | MEDLINE | ID: mdl-34646364

ABSTRACT

Radioimmunotherapy (i.e., the use of radiolabeled tumor targeting antibodies) is an emerging approach for the diagnosis, therapy, and monitoring of solid tumors. Often using paired agents, each targeting the same tumor molecule, but labelled with an imaging or therapeutic isotope, radioimmunotherapy has achieved promising clinical results in relatively radio-resistant solid tumors such as prostate. Several approaches to optimize therapeutic efficacy, such as dose fractionation and personalized dosimetry, have seen clinical success. The clinical use and optimization of a radioimmunotherapy approach is, in part, influenced by the targeted tumor antigen, several of which have been proposed for different solid tumors. Glypican-1 (GPC-1) is a heparan sulfate proteoglycan that is expressed in a variety of solid tumors, but whose expression is restricted in normal adult tissue. Here, we discuss the preclinical and clinical evidence for the potential of GPC-1 as a radioimmunotherapy target. We describe the current treatment paradigm for several solid tumors expressing GPC-1 and suggest the potential clinical utility of a GPC-1 directed radioimmunotherapy for these tumors.

7.
Int J Urol ; 28(12): 1290-1297, 2021 12.
Article in English | MEDLINE | ID: mdl-34498294

ABSTRACT

OBJECTIVES: To investigate whether anti-glypican-1 antibody Miltuximab conjugated with near-infrared dye IRDye800CW can be used for in vivo fluorescence imaging of urothelial carcinoma. METHODS: The conjugate, Miltuximab-IRDye800CW, was produced and characterized by size exclusion chromatography and flow cytometry with glypican-1-expressing cells. Balb/c nude mice bearing subcutaneous urothelial carcinoma xenografts were intravenously injected with Miltuximab-IRDye800CW or control IgG-IRDye800CW and imaged daily by fluorescence imaging. After 10 days, tumors and major organs were collected for ex vivo study of the conjugate biodistribution, including its accumulation in the tumor. RESULTS: The intravenous injection of Miltuximab-IRDye800CW to tumor-bearing mice showed its specific accumulation in the tumors with the tumor-to-background ratio of 12.7 ± 2.4, which was significantly higher than that in the control group (4.6 ± 0.9, P < 0.005). The ex vivo imaging was consistent with the in vivo findings, with tumors from the mice injected with Miltuximab-IRDye800CW being significantly brighter than the organs or the control tumors. CONCLUSIONS: The highly specific accumulation and retention of Miltuximab-IRDye800CW in glypican-1-expressing tumors in vivo shows its high potential for fluorescence imaging of urothelial carcinoma and warrants its further investigation toward clinical translation.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Animals , Cell Line, Tumor , Glypicans , Mice , Mice, Nude , Molecular Imaging , Optical Imaging , Tissue Distribution , Urinary Bladder Neoplasms/diagnostic imaging
8.
Asia Ocean J Nucl Med Biol ; 9(2): 86-100, 2021.
Article in English | MEDLINE | ID: mdl-34250138

ABSTRACT

OBJECTIVES: Miltuximab® is a chimeric antibody targeting Glypican-1 (GPC-1), a cell surface antigen which is overexpressed in solid cancers. Miltuximab® has shown promising safety and efficacy in radioimmunotherapy models of prostate cancer. This first in human study used Miltuximab® radiolabelled with Gallium-67 ([67Ga]Ga-DOTA-Miltuximab®). The primary study endpoint was to establish safety and tolerability of Miltuximab®. Secondary endpoints were biodistribution, tumour targeting and pharmacokinetic analysis. METHODS: Four cohorts of three patients (9 with advanced prostate cancer, 2 with pancreatic and 1 with bladder cancer) were dosed with 1 mg, ~250 MBq of [67Ga]Ga-DOTA-Miltuximab®. Cohort 1 received [67Ga]Ga-DOTA-Miltuximab® alone, while cohorts 2-4 were pre-infused with increasing doses (3.5, 11.5 and 24 mg, respectively) of unlabelled Miltuximab®-DOTA 1 hour prior to [67Ga]Ga-DOTA-Miltuximab®. Safety and tolerability were assessed by clinical and standard laboratory assessments. Patients underwent whole body gamma-camera scans and SPECT/CT scans up to 144 h post-infusion. Total organ radiation exposure was determined by dosimetry of whole-body gamma scans. RESULTS: The dosing regimen was well tolerated, with no drug-related adverse events observed. Liver and spleen uptake of [67Ga]Ga-DOTA-Miltuximab® was observed. Liver uptake was reduced by pre-infusion of unlabelled Miltuximab®-DOTA. Dosimetry analysis showed a favorable exposure profile. [67Ga]Ga-DOTA-Miltuximab® targeting to tumour sites was observed in two prostate cancer patients who had failed enzalutamide treatment. Higher doses of unlabelled antibody achieved lower liver uptake and increased antibody serum half life. CONCLUSIONS: This study is the first in human for Miltuximab® a first in class antibody targeting GPC-1. The trial met its primary endpoint of safety, demonstrating its potential as a safe and tolerable monoclonal antibody. This safety data, together with targeting to tumour lesions and biodistribution information supports the further clinical development of Miltuximab® as a theranostic agent in a planned Phase I human trial.

9.
Asia Ocean J Nucl Med Biol ; 9(1): 1-8, 2021.
Article in English | MEDLINE | ID: mdl-33392343

ABSTRACT

A limitation to the wider introduction of personalised dosimetry in theranostics is the relative paucity of imaging radionuclides with suitable physical and chemical properties to be paired with a long-lived therapeutic partner. As most of the beta-emitting therapeutic radionuclides emit gamma radiation as well they could potentially be used as the imaging radionuclide as well as the therapeutic radionuclide. However, the downsides are that the beta radiation will deliver a significant radiation dose as part of the treatment planning procedure, and the gamma radiation branching ratio is often quite low. Gallium-67 has been in use in nuclear medicine for over 50 years. However, the tremendous interest in gallium imaging in theranostics in recent times has focused on the PET radionuclide gallium-68. In this article it is suggested that the longer-lived gallium-67, which has desirable characteristics for imaging with the gamma camera and a suitably long half-life to match biological timescales for drug uptake and turnover, has been overlooked, in particular, for treatment planning with radionuclide therapy. Gallium-67 could also allow non-PET facilities to participate in theranostic imaging prior to treatment or for monitoring response after therapy. Gallium-67 could play a niche role in the future development of personalised medicine with theranostics.

10.
BMC Cancer ; 20(1): 1214, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33302918

ABSTRACT

BACKGROUND: Glypican-1 is a heparan sulfate proteoglycan that is overexpressed in prostate cancer (PCa), and a variety of solid tumors. Importantly, expression is restricted in normal tissue, making it an ideal tumor targeting antigen. Since there is clinical and preclinical evidence of the efficacy of Bispecific T cell Engager (BiTE) therapy in PCa, we sought to produce and test the efficacy of a GPC-1 targeted BiTE construct based on the Miltuximab® sequence. Miltuximab® is a clinical stage anti-GPC-1 antibody that has proven safe in first in human trials. METHODS: The single chain variable fragment (scFv) of Miltuximab® and the CD3 binding sequence of Blinatumomab were combined in a standard BiTE format. Binding of the construct to immobilised recombinant CD3 and GPC-1 antigens was assessed by ELISA and BiaCore, and binding to cell surface-expressed antigens was measured by flow cytometry. The ability of MIL-38-CD3 to activate T cells was assessed using in vitro co-culture assays with tumour cell lines of varying GPC-1 expression by measurement of CD69 and CD25 expression, before cytolytic activity was assessed in a similar co-culture. The release of inflammatory cytokines from T cells was measured by ELISA and expression of PD-1 on the T cell surface was measured by flow cytometry. RESULTS: Binding activity of MIL-38-CD3 to both cell surface-expressed and immobilised recombinant GPC-1 and CD3 was retained. MIL-38-CD3 was able to mediate the activation of peripheral blood T cells from healthy individuals, resulting in the release of inflammatory cytokines TNF and IFN-g. Activation was reliant on GPC-1 expression as MIL-38-CD3 mediated only low level T cell activation in the presence of C3 cells (constitutively low GPC-1 expression). Activated T cells were redirected to lyse PCa cell lines PC3 and DU-145 (GPC-1 moderate or high expression, respectively) but could not kill GPC-1 negative Raji cells. The expression of PD-1 was up-regulated on the surface of MIL-38-CD3 activated T cells, suggesting potential for synergy with checkpoint inhibition. CONCLUSIONS: This study reports preclinical findings into the efficacy of targeting GPC-1 in PCa with BiTE construct MIL-38-CD3. We show the specificity and efficacy of the construct, supporting its further preclinical development.


Subject(s)
Adenocarcinoma/pathology , Antibodies, Bispecific/pharmacology , Glypicans/immunology , Neoplasm Proteins/immunology , Prostatic Neoplasms/pathology , Single-Chain Antibodies/pharmacology , T-Cell Antigen Receptor Specificity , T-Lymphocytes, Cytotoxic/immunology , Adenocarcinoma/immunology , Antibodies, Bispecific/immunology , Antigens, CD/analysis , Antigens, Differentiation, T-Lymphocyte/analysis , CD3 Complex/immunology , Cell Line, Tumor , Coculture Techniques , Cytokines/metabolism , Cytotoxicity, Immunologic , Glypicans/antagonists & inhibitors , Humans , Immune Checkpoint Inhibitors/pharmacology , Interleukin-2 Receptor alpha Subunit/analysis , Lectins, C-Type/analysis , Lymphocyte Activation , Male , Neoplasm Proteins/antagonists & inhibitors , Prostatic Neoplasms/immunology , Recombinant Proteins/immunology , Single-Chain Antibodies/immunology , T-Lymphocytes, Cytotoxic/metabolism
11.
Photodiagnosis Photodyn Ther ; 32: 102064, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33069874

ABSTRACT

BACKGROUND: Photoimmunotherapy (PIT) is an emerging method of cancer treatment based on the use of a photosensitizer near-infrared dye IRDye700DX (IR700) conjugated to a monoclonal antibody. The antibody selectively delivers IR700 to cancer cells, which can then be killed after photoexcitation. Glypican-1 (GPC-1) is a novel target expressed specifically in malignant tumors. We aimed to investigate whether anti-GPC-1 antibody Miltuximab® (Glytherix Ltd., Sydney, Australia) can be conjugated with IR700 for PIT of solid tumors. METHODS: The dye IR700 was conjugated with Miltuximab® and characterized by spectrophotometry and flow cytometry. Miltuximab®-IR700-mediated PIT was tested in prostate (DU-145), bladder (C3 and T-24), brain (U-87 and U-251) and ovarian (SKOV-3) cancer cell lines. After 1 h incubation with Miltuximab®-IR700, the cells were washed by PBS and illuminated using a 690-nm light-emitting diode. The viability of the cells was assessed by a CCK-8 viability kit 24 h later. RESULTS: Miltuximab®-IR700-mediated PIT caused 67.3-92.3% reduction in viability of cells with medium-high GPC-1 expression and did not affect the viability of GPC-1-low cells. Cytotoxicity was attributed to the targeted binding of the conjugate with subsequent photoactivation, as the conjugate or light exposure alone had no effect on the cell viability. Miltuximab®-IR700 did not induce cytotoxicity in cells blocked by unconjugated Miltuximab®. CONCLUSIONS: PIT with Miltuximab®-IR700 appears to be highly specific and effective against GPC-1-expressing cancer cells, indicating that it holds promise for an effective and safe treatment of early stage solid tumors or as adjuvant therapy following surgical resection. These findings necessitate further investigation of PIT with Miltuximab®-IR700 in other GPC-1-expressing cancer cell lines in vitro and in vivo in xenograft tumor models.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Cell Line, Tumor , Feasibility Studies , Immunotherapy , Male , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Phototherapy , Xenograft Model Antitumor Assays
12.
EJNMMI Res ; 10(1): 46, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32382920

ABSTRACT

PURPOSE: Chimeric antibody Miltuximab®, a human IgG1 engineered from the parent antibody MIL-38, is in clinical development for solid tumour therapy. Miltuximab® targets glypican-1 (GPC-1), a cell surface protein involved in tumour growth, which is overexpressed in solid tumours, including prostate cancer (PCa). This study investigated the potential of 89Zr-labelled Miltuximab® as an imaging agent, and 177Lu-labelled Miltuximab® as a targeted beta therapy, in a mouse xenograft model of human prostate cancer. METHODS: Male BALB/c nude mice were inoculated subcutaneously with GPC-1-positive DU-145 PCa cells. In imaging and biodistribution studies, mice bearing palpable tumours received (a) 2.62 MBq [89Zr]Zr-DFO-Miltuximab® followed by PET-CT imaging, or (b) 6 MBq [177Lu]Lu-DOTA-Miltuximab® by Cerenkov imaging, and ex vivo assessment of biodistribution. In an initial tumour efficacy study, mice bearing DU-145 tumours were administered intravenously with 6 MBq [177Lu]Lu-DOTA-Miltuximab® or control DOTA-Miltuximab® then euthanised after 27 days. In a subsequent survival efficacy study, tumour-bearing mice were given 3 or 10 MBq of [177Lu]Lu-DOTA-Miltuximab®, or control, and followed up to 120 days. RESULTS: Antibody accumulation in DU-145 xenografts was detected by PET-CT imaging using [89Zr]Zr-DFO-Miltuximab® and confirmed by Cerenkov luminescence imaging post injection of [177Lu]Lu-DOTA-Miltuximab®. Antibody accumulation was higher (% IA/g) in tumours than other organs across multiple time points. A single injection with 6 MBq of [177Lu]Lu-DOTA-Miltuximab® significantly inhibited tumour growth as compared with DOTA-Miltuximab® (control). In the survival study, mice treated with 10 MBq [177Lu]Lu-DOTA-Miltuximab® had significantly prolonged survival (mean 85 days) versus control (45 days), an effect associated with increased cancer cell apoptosis. Tissue histopathology assessment showed no abnormalities associated with [177Lu]Lu-DOTA-Miltuximab®, in line with other observations of tolerability, including body weight stability. CONCLUSION: These findings demonstrate the potential utility of Miltuximab® as a PET imaging agent ([89Zr]Zr-DFO-Miltuximab®) and a beta therapy ([177Lu]Lu-DOTA-Miltuximab®) in patients with PCa or other GPC-1 expressing tumours.

13.
Urol Oncol ; 38(8): 683.e1-683.e10, 2020 08.
Article in English | MEDLINE | ID: mdl-32360170

ABSTRACT

BACKGROUND: Increasing numbers of patients are presenting with aggressive prostate cancer (CaP); therefore, there exists a need to optimally identify these patients pre-biopsy. OBJECTIVES: To compare the accuracy of total prostate specific antigen (PSA), %free PSA, and prostate health index (PHI) to differentiate between patients without CaP, with non-aggressive (Gleason 3 + 3, non-AgCaP) and with aggressive (Gleason ≥ 3 + 4, AgCaP) in a contemporary US population. DESIGN, SETTINGS, AND PARTICIPANTS: Serum samples were collected from 332 US patients scheduled for biopsy due to an elevated age-adjusted PSA. Site and Central biopsy pathologic assessment were performed. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Testing of PSA, free PSA, proPSA, and PHI was performed along with central pathology review. Test performance using logistic regression analysis for differentiating CaP from non-CaP as well as non-AgCaP from AgCaP was evaluated. RESULTS AND LIMITATIONS: Central pathology review resulted in 32 upgrades including 14 Gleason 3 + 3 scores being upgraded to AgCaP with final distribution of 148 no-CaP, 64 non-AgCaP, and 120 AgCaP patients. Receiver operator curve (ROC) analysis of the different tests showed that PHI performed best at differentiating CaP from no-CaP subjects (area under the receiver operator curve 0.79). In contrast, the different tests were essentially equivalent in differentiating AgCaP vs. non-AgCaP. CONCLUSIONS: In this recent US study of prebiopsy patients we observed a high proportion of AgCaP patients consistent with previous studies in contemporary US populations. Central Gleason review is recommended for multi-institutional studies comparing biomarkers. PHI was superior to PSA, free PSA, %free PSA, and proPSA in detecting CaP in this population but was not superior at differentiating AgCaP from non-AgCaP.


Subject(s)
Health Status , Prostate-Specific Antigen/blood , Prostate , Adult , Aged , Aged, 80 and over , Humans , Male , Middle Aged , Prospective Studies , Reproducibility of Results , United States
14.
Cancers (Basel) ; 12(4)2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32316186

ABSTRACT

Glioblastoma (GBM) is one of the most aggressive tumors and its 5-year survival is approximately 5%. Fluorescence-guided surgery (FGS) improves the extent of resection and leads to better prognosis. Molecular near-infrared (NIR) imaging appears to outperform conventional FGS, however, novel molecular targets need to be identified in GBM. Proteoglycan glypican-1 (GPC-1) is believed to be such a target as it is highly expressed in GBM and is associated with poor prognosis. We hypothesize that an anti-GPC-1 antibody, Miltuximab®, conjugated with the NIR dye, IRDye800CW (IR800), can specifically accumulate in a GBM xenograft and provide high-contrast in vivo fluorescent imaging in rodents following systemic administration. Miltuximab® was conjugated with IR800 and intravenously administered to BALB/c nude mice bearing a subcutaneous U-87 GBM hind leg xenograft. Specific accumulation of Miltuximab®-IR800 in subcutaneous xenograft tumor was detected 24 h later using an in vivo fluorescence imager. The conjugate did not cause any adverse events in mice and caused strong fluorescence of the tumor with tumor-to-background ratio (TBR) reaching 10.1 ± 2.8. The average TBR over the 10-day period was 5.8 ± 0.6 in mice injected with Miltuximab®-IR800 versus 2.4 ± 0.1 for the control group injected with IgG-IR800 (p = 0.001). Ex vivo assessment of Miltuximab®-IR800 biodistribution confirmed its highly specific accumulation in the tumor. The results of this study confirm that Miltuximab®-IR800 holds promise for intraoperative fluorescence molecular imaging of GBM and warrants further studies.

15.
Urol Oncol ; 38(8): 683.e11-683.e18, 2020 08.
Article in English | MEDLINE | ID: mdl-32305266

ABSTRACT

BACKGROUND: A clinical need exists for a biomarker test to accurately delineate aggressive prostate cancer (AgCaP), and thus better assist clinicians and patients decision-making on whether to proceed to prostate biopsy. OBJECTIVES: To develop a blood test for AgCaP and compare to PSA, %free PSA, proPSA, and prostate health index (PHI) tests. DESIGN, SETTINGS AND PARTICIPANTS: Patient samples from the MiCheck-01 trial were used for development of the MiCheck test. METHODS: Serum analyte concentrations for cellular growth factors were determined using a custom-made Luminex-based R&D Systems multianalyte kit. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Bayesian model averaging and random forest approaches were used to identify clinical factors and growth factors able to distinguish between men with AgCaP (Gleason Score [GS] ≥3+4) from those with non-AgCaP (GS 3+3). Logistic regression and Monte Carlo cross-validation identified variable combinations in order to able to maximize differentiation of AgCaP from non-AgCaP. RESULTS: The MiCheck logistic regression model was developed and comprises the following variables: serum prostate-specific antigen (PSA), patient age, Digital Rectal Exam (DRE) status, Leptin, IL-7, vascular endothelial growth factor, and Glypican-1. The model differentiated AgCaP from non-AgCaP with an area under the curve of 0.83 and was superior to PSA, %free PSA and PHI in all patient groups, regardless of PSA range. Applying the MiCheck test to all evaluable biopsy patients from the MiCheck-01 study demonstrated that up to 30% of biopsies could be avoided while delaying diagnosis of only 6.8% of GS ≥3+4 cancers, 5% of GS ≥4+3 cancers and no cancers of GS 8 or higher. CONCLUSIONS: The MiCheck test outperforms PSA, %free PSA and PHI tests in differentiating AgCaP vs. non-AgCaP patients. The MiCheck test could result in a significant number of biopsies being avoided with a low number of patients experiencing a delayed diagnosis.


Subject(s)
Prostate-Specific Antigen/blood , Prostatic Neoplasms/blood , Prostatic Neoplasms/diagnosis , Aged , Aged, 80 and over , Hematologic Tests/statistics & numerical data , Humans , Male , Middle Aged , Monte Carlo Method , Neoplasm Grading
16.
Adv Exp Med Biol ; 1245: 163-176, 2020.
Article in English | MEDLINE | ID: mdl-32266658

ABSTRACT

Glypican-1 (GPC-1) is a cell surface heparan sulphate proteoglycan that is critical during normal development, but which is not required for normal homoeostasis in the adult. It is, however, overexpressed in a variety of solid tumours and is known to regulate tumour growth, invasion, metastasis and progression, through modulation of tumour cell biology as well as influence on the tumour microenvironment (TME). The role of GPC-1 in the TME and on the tumour cell is broad, as GPC-1 regulates signalling by several growth factors, including FGF, HGF, TGF-ß, Wnt and Hedgehog (Hh). Signalling via these pathways promotes tumour growth and invasive and metastatic ability (drives epithelial-to-mesenchymal transition (EMT)) and influences angiogenesis, affecting both tumour and stromal cells. Broad modulation of the TME via inhibition of GPC-1 may represent a novel therapeutic strategy for inhibition of tumour progression. Here, we discuss the complex role of GPC-1 in tumour cells and the TME, with discussion of potential therapeutic targeting strategies.


Subject(s)
Glypicans/metabolism , Neoplasms/metabolism , Tumor Microenvironment , Epithelial-Mesenchymal Transition , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Signal Transduction
17.
ACS Sens ; 5(3): 764-771, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32134252

ABSTRACT

Circulating cancer-derived small extracellular vesicles (EVs) are nanoscale membranous vesicles shed from cancer cells that are released into surrounding body fluids. Small EVs contain biomolecules associated with cancer such as DNA and proteins for cell-to-cell communication. Therefore, small EVs have been regarded as important cancer biomarkers for liquid biopsy-based cancer diagnosis and drug treatment monitoring. However, because of the high heterogeneity and low level of small EVs in body fluids, there is a high demand for sensitive detection and characterization of such vesicles at a molecular level. In this study, we have developed a sensitive and effective approach to simultaneously profile multiple protein biomarkers expressed on cancer-derived small EVs using surface-enhanced Raman spectroscopy (SERS) nanotags in a single test, without complex isolation steps. Rapid and multiplexed phenotypic profiling of small EVs is achieved by mixing specific detection antibody-coated SERS nanotags, filtered conditioned EV-suspended medium (conditioned EVs), and capture antibody (CD63)-conjugated magnetic beads to form a sandwich immunoassay. As a proof-of-concept demonstration, we applied this approach to characterize pancreatic cancer-derived EVs by simultaneously detecting three specific EV surface receptors including Glypican-1, epithelial cell adhesion molecules (EpCAMs), and CD44 variant isoform 6 (CD44V6). The sensitivity of this method was measured down to 2.3 × 106 particles/mL, which is more sensitive and shows higher multiplexing capability than most other reported EV profiling techniques, such as western blot, enzyme-linked immunosorbent assay, and flow cytometry. Furthermore, phenotypic profiling of small EVs from colorectal cancer and bladder cancer cell lines (SW480 and C3) was conducted and compared to those derived from pancreatic cancer (Panc-1), highlighting the significant difference in EV phenotypes for various cancer cell types suspended in both phosphate-buffered saline and plasma. Thus, we believe that this technology enables a comprehensive evaluation of small secreted EV heterogeneity with high sensitivity, offering strong potential for accurate noninvasive cancer diagnosis and monitoring of drug treatment. In addition, this assay provides point-of-care use because of the easy sample preparation and portable nature of the Raman spectrometer.


Subject(s)
Extracellular Vesicles , Neoplasms , Phenotype , Biomarkers, Tumor , Cell Line, Tumor , Humans , Nanostructures , Spectrum Analysis, Raman
19.
Oncotarget ; 9(32): 22359-22367, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-29854284

ABSTRACT

Prostate cancer is responsible for hundreds of thousands of annual deaths worldwide. The current gold standard in early detection of prostate cancer, the prostate specific antigen test, boasts a high sensitivity but low specificity, resulting in many unnecessary prostate biopsies. Thus, emphasis has been placed on identifying new biomarkers to improve prostate cancer detection. Glypican-1 has recently been proposed as one such biomarker, however further exploration into its predictive power has been hindered by a lack of available, dependable glypican-1 immunoassays. Previously, we identified human glypican-1 as the antigenic target of the MIL-38 monoclonal antibody. Additionally, we have now generated another monoclonal antibody, 3G5, that also recognizes human glypican-1. Here we report the development of a reliable, custom Luminex® assay that enables precise quantitation of circulating human glypican-1 in plasma and serum. Using this assay, we show for the first time that circulating glypican-1 levels can differentiate non-cancer (normal and benign prostatic hyperplasia) patients from prostate cancer patients, as well as benign prostatic hyperplasia patients alone from prostate cancer patients. Our findings strongly promote future investigation into the use of glypican-1 for early detection of prostate cancer.

20.
PLoS One ; 13(4): e0196017, 2018.
Article in English | MEDLINE | ID: mdl-29672570

ABSTRACT

While measurement of serum prostate specific antigen (PSA) is an important screening tool for prostate cancer, new biomarkers are necessary for better discrimination between presence and absence of disease. The MIL-38 monoclonal antibody is specific for the membrane glycoprotein glypican 1 (GPC-1) and binds to prostate cancer tissue. Urine is known to be a source of cellular material. Thus, we hypothesized that detection of GPC-1 in urine cellular material may identify individuals with prostate cancer. Urine samples from patients with prostate cancer, benign prostatic hyperplasia (BPH), or normal controls were collected and cell sediments prepared. GPC-1-positive cells were detected using a MIL-38 immunofluorescence assay (IFA) and samples were classed positive or negative for GPC-1 expressing cells. Assay sensitivity and specificity, stratified by PSA, was reported. A total of 125 patient samples were analyzed (N = 41 prostate cancer; N = 37 BPH; N = 47 normal controls). The use of MIL-38 to detect GPC-1 by IFA discriminated between prostate cancer and BPH urine specimens with a sensitivity and specificity of 71% and 76%, respectively. Assay specificity increased with increasing PSA, with the highest specificity (89%) for patients with PSA ≥4 ng/ml. At lower PSA (<2 ng/ml) specificity decreased, as evidenced by a greater number of false positives in this concentration range. The odds ratio (OR) and 95% confidence intervals (CIs) for GPC-1-positive cells in patients with prostate cancer, adjusted for PSA, was greatest at the lowest serum PSA (<2 ng/ml; OR = 13.4; 95% CI: 4.0-44.7) compared with no adjustment for PSA (OR = 6.4; 95% CI: 2.8-14.9). The use of MIL-38 for detection of GPC-1 may be a useful tool for detection of prostate cancer.


Subject(s)
Glypicans/urine , Prostatic Neoplasms/urine , Aged , Biomarkers, Tumor , Case-Control Studies , Glypicans/genetics , Humans , Male , Middle Aged , Neoplasm Grading , Odds Ratio , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Sensitivity and Specificity , Urinalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...