Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Adv ; 6(8): eaax8256, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32128396

ABSTRACT

Induced transparency is a common but remarkable effect in optics. It occurs when a strong driving field is used to render an otherwise opaque material transparent. The effect is known as electromagnetically induced transparency in atomic media and optomechanically induced transparency in systems that consist of coupled optical and mechanical resonators. In this work, we introduce the concept of photothermally induced transparency (PTIT). It happens when an optical resonator exhibits nonlinear behavior due to optical heating of the resonator or its mirrors. Similar to the established mechanisms for induced transparency, PTIT can suppress the coupling between an optical resonator and a traveling optical field. We further show that the dispersion of the resonator can be modified to exhibit slow or fast light. Because of the relatively slow thermal response, we observe the bandwidth of the PTIT to be 2π × 15.9 Hz, which theoretically suggests a group velocity of as low as 5 m/s.

2.
Opt Express ; 26(10): 12424-12431, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29801280

ABSTRACT

A number of techniques exist to use an ensemble of atoms as a quantum memory for light. Many of these propose to use backward retrieval as a way to improve the storage and recall efficiency. We report on a demonstration of an off-resonant Raman memory that uses backward retrieval to achieve an efficiency of 65 ± 6% at a storage time of one pulse duration. The memory has a characteristic decay time of 60 µs, corresponding to a delay-bandwidth product of 160.

3.
Sci Rep ; 8(1): 221, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29317728

ABSTRACT

High precision, high numerical aperture mirrors are desirable for mediating strong atom-light coupling in quantum optics applications and can also serve as important reference surfaces for optical metrology. In this work we demonstrate the fabrication of highly-precise hemispheric mirrors with numerical aperture NA = 0.996. The mirrors were fabricated from aluminum by single-point diamond turning using a stable ultra-precision lathe calibrated with an in-situ white-light interferometer. Our mirrors have a diameter of 25 mm and were characterized using a combination of wide-angle single-shot and small-angle stitched multi-shot interferometry. The measurements show root-mean-square (RMS) form errors consistently below 25 nm. The smoothest of our mirrors has a RMS error of 14 nm and a peak-to-valley (PV) error of 88 nm, which corresponds to a form accuracy of λ/50 for visible optics.

4.
Sci Rep ; 7(1): 9299, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28839180

ABSTRACT

We propose a new method to extend the path length tunability of rotary delay-lines. This method was shown to achieve a duty cycle of >80% and repetition rates of over 40 kHz. The new method relies on a new multi-segmented micro-machined mirror and serial injection of a single reflection onto separate segments of this mirror. The tunability is provided by the relative positioning of each reflective point on the mirror segments. There are two distinct modes of operation: synchronous and asynchronous. By simply manipulating the spatial position of the returning paths over the respective mirror segments, we can switch between increasing the repetition rate (asynchronous mode) or the total delay path (synchronous mode). We experimentally demonstrated up to 8 m/s scans with repetition rates of up to 42.7 kHz. Furthermore, we present numerical simulations of 18 reflection points to illustrate possibility of achieving a scan speed of up to 80 m/s. Through intermediate combinations of synchronous and asynchronous operation modes with 4 or more passes, we also show that the system can simultaneously increase both repetition rate and scan depth.

5.
Proc Natl Acad Sci U S A ; 113(48): 13642-13647, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27856742

ABSTRACT

Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon.

6.
Sci Rep ; 5: 17633, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26655839

ABSTRACT

Optical resonance is central to a wide range of optical devices and techniques. In an optical cavity, the round-trip length and mirror reflectivity can be chosen to optimize the circulating optical power, linewidth, and free-spectral range (FSR) for a given application. In this paper we show how an atomic spinwave system, with no physical mirrors, can behave in a manner that is analogous to an optical cavity. We demonstrate this similarity by characterising the build-up and decay of the resonance in the time domain, and measuring the effective optical linewidth and FSR in the frequency domain. Our spinwave is generated in a 20 cm long Rb gas cell, yet it facilitates an effective FSR of 83 kHz, which would require a round-trip path of 3.6 km in a free-space optical cavity. Furthermore, the spinwave coupling is controllable enabling dynamic tuning of the effective cavity parameters.

7.
Phys Rev Lett ; 112(16): 160801, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24815630

ABSTRACT

We demonstrate thermometry with a resolution of 80 nK/Hz using an isotropic crystalline whispering-gallery mode resonator based on a dichroic dual-mode technique. We simultaneously excite two modes that have a mode frequency ratio that is very close to two (±0.3 ppm). The wavelength and temperature dependence of the refractive index means that the frequency difference between these modes is an ultrasensitive proxy of the resonator temperature. This approach to temperature sensing automatically suppresses sensitivity to thermal expansion and vibrationally induced changes of the resonator. We also demonstrate active suppression of temperature fluctuations in the resonator by controlling the intensity of the driving laser. The residual temperature fluctuations are shown to be below the limits set by fundamental thermodynamic fluctuations of the resonator material.

8.
J Vis Exp ; (81): e50552, 2013 Nov 11.
Article in English | MEDLINE | ID: mdl-24300586

ABSTRACT

Gradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain.


Subject(s)
Computer Storage Devices , Optics and Photonics/methods , Quantum Theory , Rubidium/chemistry , Gases/chemistry
9.
Appl Opt ; 51(7): 873-6, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22410888

ABSTRACT

We report on the generation of high-order optical vortices by spiral phase mirrors (SPMs). The mirrors are produced by direct machining with a diamond tool and are shown to produce high-quality optical vortices with topological charges ranging from 1 to upwards of 100 at a wavelength of 532 nm. The direct machining technique is flexible and offers the promise of high-precision, large-diameter SPMs that are compatible with high optical powers.

10.
Opt Lett ; 33(22): 2659-61, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-19015700

ABSTRACT

We implement double electromagnetically induced transparency (DEIT) in rubidium vapor using a tripod-shaped energy-level scheme consisting of hyperfine magnetic sublevels of the 5S1/2-->5P1/2 transition. We show experimentally that through the use of DEIT one can control the contrast of transparency windows as well as group velocities of the two signal fields. In particular, the group velocities can be equalized, which holds promise to greatly enhance nonlinear optical interaction between these fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...