Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 6: 23046, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26965073

ABSTRACT

Obliteration of matter by pulsed laser beams is not only prevalent in science fiction movies, but finds numerous technological applications ranging from additive manufacturing over machining of micro- and nanostructured features to health care. Pulse lengths ranging from femtoseconds to nanoseconds are utilized at varying laser beam energies and pulse lengths, and enable the removal of nanometric volumes of material. While the mechanisms for removal of material by laser irradiation, i.e., laser ablation, are well understood on the micrometer length scale, it was previously impossible to directly observe obliteration processes on smaller scales due to experimental limitations for the combination of nanometer spatial and nanosecond temporal resolution. Here, we report the direct observation of metal thin film ablation from a solid substrate through dynamic transmission electron microscopy. Quantitative analysis reveals liquid-phase dewetting of the thin-film, followed by hydrodynamic sputtering of nano- to submicron sized metal droplets. We discovered unexpected fracturing of the substrate due to evolving thermal stresses. This study confirms that hydrodynamic sputtering remains a valid mechanism for droplet expulsion on the nanoscale, while irradiation induced stress fields represent limit laser processing of nanostructured materials. Our results allow for improved safety during laser ablation in manufacturing and medical applications.


Subject(s)
Laser Therapy/methods , Lasers , Microscopy, Electron, Transmission/methods , Metals/chemistry , Microscopy, Electron, Transmission/instrumentation , Nanostructures/chemistry
2.
Adv Mater ; 27(6): 1060-5, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25534954

ABSTRACT

Core-shell particle ensembles are fabricated by pulsed-laser-induced dewetting of initially continuous, ultrathin alloy films through a combination of morphological and chemical instability. The synthesis of these arrays is monitored in situ with high spatial and temporal resolutions, which, when combined with ex situ composition analysis, provides insight to the morphological and chemical evolution pathways leading to core-shell particle formation.

3.
Rev Sci Instrum ; 85(8): 084902, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25173298

ABSTRACT

Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns-500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10(2) K/s-10(5) K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

4.
Langmuir ; 28(49): 17168-75, 2012 Dec 11.
Article in English | MEDLINE | ID: mdl-23145476

ABSTRACT

Using pump-probe electron microscopy techniques, the dewetting of thin nickel films exposed to a pulsed nanosecond laser was monitored at tens of nanometers spatial and nanosecond time scales to provide insight into the liquid-phase assembly dynamics. Thickness-dependent and correlated time and length scales indicate that a spinodal instability drives the assembly process. Measured lifetimes of the liquid metal are consistent with finite-difference simulations of the laser-irradiated film and are consistent with estimated and observed spinodal time scales. These results can be used to design improved synthesis and assembly routes toward achieving advanced functional nanomaterials and devices.

5.
Micron ; 43(11): 1108-20, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22595460

ABSTRACT

The growing field of ultrafast materials science, aimed at exploring short-lived transient processes in materials on the microsecond to femtosecond timescales, has spawned the development of time-resolved, in situ techniques in electron microscopy capable of capturing these events. This article gives a brief overview of two principal approaches that have emerged in the past decade: the stroboscopic ultrafast electron microscope and the nanosecond-time-resolved single-shot instrument. The high time resolution is garnered through the use of advanced pulsed laser systems and a pump-probe experimental platforms using laser-driven photoemission processes to generate time-correlated electron probe pulses synchronized with laser-driven events in the specimen. Each technique has its advantages and limitations and thus is complementary in terms of the materials systems and processes that they can investigate. The stroboscopic approach can achieve atomic resolution and sub-picosecond time resolution for capturing transient events, though it is limited to highly repeatable (>10(6) cycles) materials processes, e.g., optically driven electronic phase transitions that must reset to the material's ground state within the repetition rate of the femtosecond laser. The single-shot approach can explore irreversible events in materials, but the spatial resolution is limited by electron source brightness and electron-electron interactions at nanosecond temporal resolutions and higher. The first part of the article will explain basic operating principles of the stroboscopic approach and briefly review recent applications of this technique. As the authors have pursued the development of the single-shot approach, the latter part of the review discusses its instrumentation design in detail and presents examples of materials science studies and the near-term instrumentation developments of this technique.

6.
J Electron Microsc (Tokyo) ; 59 Suppl 1: S67-74, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20548104

ABSTRACT

The dynamic transmission electron microscope (DTEM) offers a means of capturing rapid evolution in a specimen through in situ microscopy experiments by allowing 15-ns electron micrograph exposure times. The rapid exposure time is enabled by creating a burst of electrons at the emitter by ultraviolet pulsed laser illumination. This burst arrives at a specified time after a second laser initiates the specimen reaction. The timing of the two Q-switched lasers is controlled by high-speed pulse generators with a timing error much less than the pulse duration. Both diffraction and imaging experiments can be performed, just as in a conventional TEM. The brightness of the emitter and the total current control the spatial and temporal resolutions. We have demonstrated 7-nm spatial resolution in single 15-ns pulsed images. These single-pulse imaging experiments have been used to study martensitic transformations, nucleation and crystallization of an amorphous metal and rapid chemical reactions. Measurements have been performed on these systems that are possible by no other experimental approaches currently available.

9.
Microsc Res Tech ; 72(3): 122-30, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19165740

ABSTRACT

The dynamic transmission electron microscope (DTEM) is introduced as a novel tool for in situ processing of materials. Examples of various types of dynamic studies outline the advantages and differences of laser-based heating in the DTEM in comparison to conventional (resistive) heating in situ TEM methods. We demonstrate various unique capabilities of the drive laser, namely, in situ processing of nanoscale materials, rapid and high temperature phase transformations, and controlled thermal activation of materials. These experiments would otherwise be impossible without the use of the DTEM drive laser. Thus, the potential of the DTEM as a new technique to process and characterize the growth of a myriad of micro and nanostructures is demonstrated.


Subject(s)
Lasers , Microscopy, Electron, Transmission/methods , Nanostructures/ultrastructure , Materials Testing , Microscopy, Electron, Transmission/instrumentation , Nanostructures/chemistry , Temperature
10.
Science ; 321(5895): 1472-5, 2008 Sep 12.
Article in English | MEDLINE | ID: mdl-18787163

ABSTRACT

The microstructure and properties of a material depend on dynamic processes such as defect motion, nucleation and growth, and phase transitions. Transmission electron microscopy (TEM) can spatially resolve these nanoscale phenomena but lacks the time resolution for direct observation. We used a photoemitted electron pulse to probe dynamic events with "snapshot" diffraction and imaging at 15-nanosecond resolution inside of a dynamic TEM. With the use of this capability, the moving reaction front of reactive nanolaminates is observed in situ. Time-resolved images and diffraction show a transient cellular morphology in a dynamically mixing, self-propagating reaction front, revealing brief phase separation during cooling, and thus provide insights into the mechanisms driving the self-propagating high-temperature synthesis.

11.
Ultramicroscopy ; 108(11): 1441-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18783886

ABSTRACT

Most biological processes, chemical reactions and materials dynamics occur at rates much faster than can be captured with standard video rate acquisition methods in transmission electron microscopes (TEM). Thus, there is a need to increase the temporal resolution in order to capture and understand salient features of these rapid materials processes. This paper details the development of a high-time resolution dynamic transmission electron microscope (DTEM) that captures dynamics in materials with nanosecond time resolution. The current DTEM performance, having a spatial resolution <10nm for single-shot imaging using 15ns electron pulses, will be discussed in the context of experimental investigations in solid state reactions of NiAl reactive multilayer films, the study of martensitic transformations in nanocrystalline Ti and the catalytic growth of Si nanowires. In addition, this paper will address the technical issues involved with high current, electron pulse operation and the near-term improvements to the electron optics, which will greatly improve the signal and spatial resolutions, and to the laser system, which will allow tailored specimen and photocathode drive conditions.

12.
Ultramicroscopy ; 107(4-5): 356-67, 2007.
Article in English | MEDLINE | ID: mdl-17169490

ABSTRACT

Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5 x 10(7) electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10(-6)s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...