Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 101(7): 1292-1299, 2017 Jul.
Article in English | MEDLINE | ID: mdl-30682944

ABSTRACT

Genetic control of resistance to Fusarium head blight (FHB) is quantitative, making phenotypic selection difficult. Genetic markers to resistance are helpful to select favorable genotypes. This study was conducted to determine if Fhb1 and Fhb5 present in the Sumai 3 source of FHB resistance occur in Sumai 3-derived North American spring wheat cultivars and to understand the appropriateness of using markers to select for the favorable alleles at these loci in breeding. Sumai 3-derived parents Alsen, ND3085, ND744, Carberry, and Glenn were used in crosses to generate 14 doubled haploid breeding populations. The parents and progeny were genotyped with five Fhb1 and three Fhb5 microsatellite markers. Progeny were selected based on performance relative to parents and other control cultivars in FHB nurseries near Portage la Prairie and Carman, MB. χ2 and t test analyses were performed on marker and FHB data. The χ2 test frequently determined the proportion of lines carrying molecular variants associated with FHB resistance increased following nursery selection for FHB. Similarly, the t test regularly demonstrated that selection for FHB resistance lowered the mean level of disease associated with resistant marker haplotypes. The study affirmed FHB resistance sources Alsen, Carberry, ND3085, and ND744 have Fhb1 and Fhb5 loci like Sumai 3, but no evidence was found that Glenn carries Fhb1 and Fhb5 resistance alleles. The results justified use of Fhb1 and Fhb5 markers for marker assisted selection in populations derived from Alsen, Carberry, ND3085, and ND744, but not Glenn. Combined or individual application of Xgwm493 and Xgwm533 in selection of genotypes carrying Fhb1, and Xgwm150, Xgwm304, and Xgwm595 for Fhb5 will enhance FHB resistance in wheat.

2.
Theor Appl Genet ; 129(2): 243-56, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26520114

ABSTRACT

KEY MESSAGE: Breeding for field resistance to common bunt in wheat will need to account for multiple genes and epistatic and QTL by environment interactions. Loci associated with quantitative resistance to common bunt are co-localized with other beneficial traits including plant height and rust resistance. ABSTRACT: Common bunt, also known as stinking smut, is caused by seed borne fungi Tilletia tritici (Bjerk.) Wint. [syn. Tilletia caries (DC.) Tul.] and Tilletia laevis Kühn [syn. Tilletia foetida (Wallr.) Liro.]. Common bunt is known to cause grain yield and quality losses in wheat due to bunt ball formation and infestation of the grain. The objectives of this research were to identify and map quantitative trait loci (QTL) for common bunt resistance, to study the epistatic interactions between the identified QTL, and investigate the co-localization of bunt resistance with plant height. A population of 261 doubled haploid lines from the cross Carberry/AC Cadillac and checks were genotyped with polymorphic genome wide microsatellite and DArT(®) markers. The lines were grown in 2011, 2012, and 2013 in separate nurseries for common bunt incidence and height evaluation. AC Cadillac contributed a QTL (QCbt.spa-6D) for common bunt resistance on chromosome 6D at markers XwPt-1695, XwPt-672044, and XwPt-5114. Carberry contributed QTL for bunt resistance on chromosomes 1B (QCbt.spa-1B at XwPt743523) 4B (QCbt.spa-4B at XwPt-744434-Xwmc617), 4D (QCbt.spa-4D at XwPt-9747), 5B (QCbt.spa-5B at XtPt-3719) and 7D (QCbt.spa-7D at Xwmc273). Significant epistatic interactions were identified for percent bunt incidence between QCbt.spa-1B × QCbt.spa-4B and QCbt.spa-1B × QCbt.spa-6D, and QTL by environment interaction between QCbt.spa-1B × QCbt.spa-6D. Plant height QTL were found on chromosomes 4B (QPh.spa-4B) and 6D (QPh.spa-6D) that co-located with bunt resistance QTL. The identification of previously unreported common bunt resistance QTL (on chromosomes 4B, 4D and 7D), and new understanding of QTL × QTL interactions will facilitate marker-assisted breeding for common bunt resistance.


Subject(s)
Chromosome Mapping , Disease Resistance/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Triticum/genetics , Basidiomycota , Breeding , Chromosomes, Plant/genetics , DNA, Plant/genetics , Epistasis, Genetic , Genetic Markers , Genotype , Haploidy , Microsatellite Repeats , Plant Diseases/microbiology , Triticum/microbiology
3.
Theor Appl Genet ; 127(11): 2465-77, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25239218

ABSTRACT

KEY MESSAGE: In wheat, advantageous gene-rich or pleiotropic regions for stripe, leaf, and stem rust and epistatic interactions between rust resistance loci should be accounted for in plant breeding strategies. Leaf rust (Puccinia triticina Eriks.) and stripe rust (Puccinia striiformis f. tritici Eriks) contribute to major production losses in many regions worldwide. The objectives of this research were to identify and study epistatic interactions of quantitative trait loci (QTL) for stripe and leaf rust resistance in a doubled haploid (DH) population derived from the cross of Canadian wheat cultivars, AC Cadillac and Carberry. The relationship of leaf and stripe rust resistance QTL that co-located with stem rust resistance QTL previously mapped in this population was also investigated. The Carberry/AC Cadillac population was genotyped with DArT(®) and simple sequence repeat markers. The parents and population were phenotyped for stripe rust severity and infection response in field rust nurseries in Kenya (Njoro), Canada (Swift Current), and New Zealand (Lincoln); and for leaf rust severity and infection response in field nurseries in Canada (Swift Current) and New Zealand (Lincoln). AC Cadillac was a source of stripe rust resistance QTL on chromosomes 2A, 2B, 3A, 3B, 5B, and 7B; and Carberry was a source of resistance on chromosomes 2B, 4B, and 7A. AC Cadillac contributed QTL for resistance to leaf rust on chromosome 2A and Carberry contributed QTL on chromosomes 2B and 4B. Stripe rust resistance QTL co-localized with previously reported stem rust resistance QTL on 2B, 3B, and 7B, while leaf rust resistance QTL co-localized with 4B stem rust resistance QTL. Several epistatic interactions were identified both for stripe and leaf rust resistance QTL. We have identified useful combinations of genetic loci with main and epistatic effects. Multiple disease resistance regions identified on chromosomes 2A, 2B, 3B, 4B, 5B, and 7B are prime candidates for further investigation and validation of their broad resistance.


Subject(s)
Basidiomycota , Disease Resistance/genetics , Epistasis, Genetic , Quantitative Trait Loci , Triticum/genetics , Breeding , Canada , Chromosome Mapping , Chromosomes, Plant , Genetic Linkage , Genetics, Population , Genotype , Kenya , New Zealand , Phenotype , Plant Diseases/genetics , Plant Diseases/microbiology , Triticum/microbiology
4.
Theor Appl Genet ; 126(8): 1951-64, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23649649

ABSTRACT

Stem rust (Puccinia graminis f. sp. tritici) is responsible for major production losses in hexaploid wheat (Triticum aestivum L.) around the world. The spread of stem rust race Ug99 and variants is a threat to worldwide wheat production and efforts are ongoing to identify and incorporate resistance. The objectives of this research were to identify quantitative trait loci (QTL) and to study their epistatic interactions for stem rust resistance in a population derived from the Canadian wheat cultivars AC Cadillac and Carberry. A doubled haploid (DH) population was developed and genotyped with DArT(®) and SSR markers. The parents and DH lines were phenotyped for stem rust severity and infection response to Ug99 and variant races in 2009, 2010 and 2011 in field rust nurseries near Njoro, Kenya, and to North American races in 2011 and 2012 near Swift Current, SK, Canada. Seedling infection type to race TTKSK was assessed in a bio-containment facility in 2009 and 2012 near Morden, MB. Eight QTL for stem rust resistance and three QTL for pseudo-black chaff on nine wheat chromosomes were identified. The phenotypic variance (PV) explained by the stem rust resistance QTL ranged from 2.4 to 48.8 %. AC Cadillac contributed stem rust resistance QTL on chromosomes 2B, 3B, 5B, 6D, 7B and 7D. Carberry contributed resistance QTL on 4B and 5A. Epistatic interactions were observed between loci on 4B and 5B, 4B and 7B, 6D and 3B, 6D and 5B, and 6D and 7B. The stem rust resistance locus on 6D interacted synergistically with 5B to improve the disease resistance through both crossover and non-crossover interactions depending on the environment. Results from this study will assist in planning breeding for stem rust resistance by maximizing QTL main effects and epistatic interactions.


Subject(s)
Disease Resistance/genetics , Plant Diseases/immunology , Quantitative Trait Loci/genetics , Triticum/genetics , Basidiomycota , Chromosome Mapping , Chromosomes, Plant , Edible Grain/genetics , Epistasis, Genetic , Genotype , Plant Diseases/microbiology , Plant Stems , Triticum/immunology , Triticum/microbiology
5.
Phytopathology ; 92(12): 1284-92, 2002 Dec.
Article in English | MEDLINE | ID: mdl-18943882

ABSTRACT

ABSTRACT Bacterial speck of tomato, caused by Pseudomonas syringae pv. tomato, continues to be a problem for tomato growers worldwide. A collection of nonpathogenic bacteria from tomato leaves plus P. syringae strains TLP2 and Cit7, P. fluorescens strain A506, and P. syringae pv. tomato DC3000 hrp mutants were examined in a greenhouse bioassay for the ability to reduce foliar bacterial speck disease severity. While several of these strains significantly reduced disease severity, P. syringae Cit7 was the most effective, providing a mean level of disease reduction of 78% under greenhouse conditions. The P. syringae pv. tomato DC3000 hrpA, hrpH, and hrpS mutants also significantly reduced speck severity under greenhouse conditions. The strains with the greatest efficacy under greenhouse conditions were tested for the ability to reduce bacterial speck under field conditions at locations in Alabama, Florida, and Ontario, Canada. P. syringae Cit7 was the most effective strain, providing a mean level of disease reduction of 28% over 10 different field experiments. P. fluorescens A506, which is commercially available as Blight-Ban A506, provided a mean level of disease reduction of 18% over nine different field experiments. While neither P. syringae Cit7 nor P. fluorescens A506 can be integrated with copper bactericides due to their copper sensitivity, there exist some potential for integrating these biological control agents with "plant activators", including Actigard. Of the P. syringae pv. tomato DC3000 hrp mutants tested, only the hrpS mutant reduced speck severity significantly under field conditions.

6.
Plant Dis ; 85(5): 481-488, 2001 May.
Article in English | MEDLINE | ID: mdl-30823123

ABSTRACT

Acibenzolar-S-methyl (CGA 245704 or Actigard 50WG) is a plant activator that induces systemic acquired resistance (SAR) in many different crops to a number of pathogens. Acibenzolar-S-methyl was evaluated for management of bacterial spot (Xanthomonas axonopodis pv. vesicatoria) and bacterial speck (Pseudomonas syringae pv. tomato) of tomato in 15 and 7 field experiments, respectively. Experiments were conducted over a 4-year period in Florida, Alabama, North Carolina, Ohio, and Ontario using local production systems. Applied at 35 g a.i. ha-1, acibenzolar-S-methyl reduced foliar disease severity in 14 of the 15 bacterial spot and all 7 bacterial speck experiments. Disease control was similar or superior to that obtained using a standard copper bactericide program. Acibenzolar-S-methyl also reduced bacterial fruit spot and speck incidence. Tomato yield was not affected by using the plant activator in the field when complemented with fungicides to manage foliar fungal diseases, but tomato transplant dry weight was negatively impacted. X. axonopodis pv. vesicatoria population densities on greenhouse-grown tomato transplants were reduced by acibenzolar-S-methyl treatment. Bacterial speck and spot population densities on leaves of field-grown plants were not dramatically affected. Acibenzolar-S-methyl can be integrated as a viable alternative to copper-based bactericides for field management of bacterial spot and speck, particularly where copper-resistant populations predominate.

7.
J Comp Neurol ; 347(4): 619-27, 1994 Sep 22.
Article in English | MEDLINE | ID: mdl-7814678

ABSTRACT

Relatively little is known about the organization of neural input to pelvic viscera in amphibia. In this study, sacral spinal efferent neurons were labeled in Xenopus laevis frogs by application of horseradish peroxidase (HRP) to the tenth spinal nerve, to pelvic musculature, or to the pelvic nerve. DiI was applied to the pelvic nerve with similar results. Labeled spinal neurons were located in the intermediate gray or in the ventral horn. Neurons in the tenth dorsal root ganglion, but not in the spinal cord, were labeled after application of HRP or DiI to the pudendal nerve. The labeled neurons in the spinal cord intermediate gray were in a position comparable to that of the mammalian sacral parasympathetic nucleus (SPN). Two apparent subdivisions included 1) a medial cluster of cells with mediolaterally oriented dendrites and 2) a lateral group with dorsoventrally oriented dendrites. An intermediate group, not clearly classed with the other two, was also identifiable. In some cases, labeled tenth nerve primary afferents were seen in contact with efferent neurons of the intermediate gray. Labeled neurons in the ventral horn medial to the lateral motor column were small, with dendrites oriented mediolaterally, in a position comparable to that of the mammalian Onuf's nucleus. The peripheral targets of DiI-labeled pelvic nerve axons were the compressor cloaca muscle, cloaca, and bladder. DiI-labeled pudendal nerve axons distributed peripherally to cloacal lip and medial thigh integument. These data suggest that the pudendal nerve in amphibians is purely sensory and that both somatic and autonomic motor axons traverse the pelvic nerve.


Subject(s)
Neurons/ultrastructure , Pelvis/innervation , Spinal Cord/cytology , Xenopus laevis/anatomy & histology , Animals , Lumbosacral Region , Neuromuscular Junction/physiology
8.
Anat Embryol (Berl) ; 176(2): 155-63, 1987.
Article in English | MEDLINE | ID: mdl-2441625

ABSTRACT

Neural elements in the lumbar enlargement of the developing Rana catesbeiana spinal cord were labelled by placing chips of dessicated horseradish peroxidase (HRP) into various lesions of the spinal cord. Of the elements labelled in the lumbar enlargement, a population of cells circumjacent to the gray matter was seen to be distinct from all others on the basis of their morphology, position and their putative embryonic origin. One cell type not previously described was a large circumferential cell (LCC) with primary processes completely circumscribing the gray matter. The ventral process crosses the midline and ascends or descends in the ventral funiculus. The dorsal primary process was observed to extend to the midline and turn ipsilaterally in a rostro-caudal direction in the dorsal funiculus. LCC's were present at early stages of larval development (stage III, Taylor and Kollros 1946) but could not be labelled in juvenile frogs. LCC's were only observed in the lumbar enlargement and could only be labelled through HRP applications at that level. They receive abundant synaptic input from the ipsilateral lateral funiculus. Possible roles for the LCC in the early function and development of the ranid lumbar spinal cord are discussed.


Subject(s)
Spinal Cord/growth & development , Aging , Animals , Axonal Transport , Horseradish Peroxidase , Metamorphosis, Biological , Rana catesbeiana , Spinal Cord/anatomy & histology , Spinal Cord/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...