Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-19559808

ABSTRACT

The localization, distribution and orientation of O(2) chemoreceptors associated with the control of cardio-respiratory responses were investigated in the neotropical, Hoplias lacerdae. Selective denervation of the cranial nerves (IX and X) was combined with chemical stimulation (NaCN) to characterize the gill O(2) chemoreceptors, and the fish were then exposed to gradual hypoxia to examine the extent of each cardio-respiratory response. Changes in heart rate (f(H)) and ventilation amplitude (V(amp)) were allied with chemoreceptors distributed on both internal and external surfaces of all gill arches, while ventilation rate (f) was allied to the O(2) chemoreceptors located only in the internal surface of the first gill arch. H. lacerdae exposed to gradual hypoxia produced a marked bradycardia (45%) and 50% increase in V(amp), but only a relatively small change in f (32%). Thus, the low f(R) response yet high V(amp) were in accord with the characterization of the O(2) chemoreceptors. Comparing these results from H. lacerdae with hypoxia-tolerant species revealed a relationship existent between general oxygenation of the individual species environment, its cardio-respiratory response to hypoxia and the characterization of O(2) chemoreceptors.


Subject(s)
Adaptation, Physiological/genetics , Cardiovascular Physiological Phenomena , Chemoreceptor Cells/physiology , Fishes/physiology , Oxygen/physiology , Respiratory Physiological Phenomena , Animals , Blood Pressure/physiology , Cranial Nerves/surgery , Denervation , Gills/blood supply , Gills/drug effects , Gills/innervation , Heart Rate/physiology , Organ Specificity , Sodium Cyanide/pharmacology , Species Specificity , Stress, Physiological/physiology
2.
J Exp Biol ; 209(Pt 14): 2628-36, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16809454

ABSTRACT

Autonomic control of heart rate variability and the central location of vagal preganglionic neurones (VPN) were examined in the rattlesnake (Crotalus durissus terrificus), in order to determine whether respiratory sinus arrhythmia (RSA) occurred in a similar manner to that described for mammals. Resting ECG signals were recorded in undisturbed snakes using miniature datalogging devices, and the presence of oscillations in heart rate (fh) was assessed by power spectral analysis (PSA). This mathematical technique provides a graphical output that enables the estimation of cardiac autonomic control by measuring periodic changes in the heart beat interval. At fh above 19 min(-1) spectra were mainly characterised by low frequency components, reflecting mainly adrenergic tonus on the heart. By contrast, at fh below 19 min(-1) spectra typically contained high frequency components, demonstrated to be cholinergic in origin. Snakes with a fh >19 min(-1) may therefore have insufficient cholinergic tonus and/or too high an adrenergic tonus acting upon the heart for respiratory sinus arrhythmia (RSA) to develop. A parallel study monitored fh simultaneously with the intraperitoneal pressures associated with lung inflation. Snakes with a fh<19 min(-1) exhibited a high frequency (HF) peak in the power spectrum, which correlated with ventilation rate (fv). Adrenergic blockade by propranolol infusion increased the variability of the ventilation cycle, and the oscillatory component of the fh spectrum broadened accordingly. Infusion of atropine to effect cholinergic blockade abolished this HF component, confirming a role for vagal control of the heart in matching fh and fv in the rattlesnake. A neuroanatomical study of the brainstem revealed two locations for vagal preganglionic neurones (VPN). This is consistent with the suggestion that generation of ventilatory components in the heart rate variability (HRV) signal are dependent on spatially distinct loci for cardiac VPN. Therefore, this study has demonstrated the presence of RSA in the HRV signal and a dual location for VPN in the rattlesnake. We suggest there to be a causal relationship between these two observations.


Subject(s)
Crotalus/physiology , Heart Rate/physiology , Animals , Autonomic Fibers, Preganglionic/physiology , Brain Stem/anatomy & histology , Brain Stem/physiology , Vagus Nerve/anatomy & histology , Vagus Nerve/physiology
SELECTION OF CITATIONS
SEARCH DETAIL