Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Oncol ; 16(2): 447-465, 2022 01.
Article in English | MEDLINE | ID: mdl-34657382

ABSTRACT

Breast cancer is the most diagnosed malignancy in women, with over half a million women dying from this disease each year. In our previous studies, ∆40p53, an N-terminally truncated p53 isoform, was found to be upregulated in breast cancers, and a high ∆40p53 : p53α ratio was linked with worse disease-free survival. Although p53α inhibits cancer migration and invasion, little is known about the role of ∆40p53 in regulating these metastasis-related processes and its role in contributing to worse prognosis. The aim of this study was to assess the role of ∆40p53 in breast cancer migration and invasion. A relationship between Δ40p53 and gene expression profiles was identified in oestrogen-receptor-positive breast cancer specimens. To further evaluate the role of Δ40p53 in oestrogen-receptor-positive breast cancer, MCF-7 and ZR75-1 cell lines were transduced to knockdown p53α or Δ40p53 and overexpress Δ40p53. Proliferation, migration and invasion were assessed in the transduced sublines, and gene expression was assessed through RNA-sequencing and validated by reverse-transcription quantitative PCR. Knockdown of both p53α and ∆40p53 resulted in increased proliferation, whereas overexpression of ∆40p53 reduced proliferation rates. p53α knockdown was also associated with increased cell mobility. ∆40p53 overexpression reduced both migratory and invasive properties of the transduced cells. Phenotypic findings are supported by gene expression data, including differential expression of LRG1, HYOU1, UBE2QL1, SERPINA5 and PCDH7. Taken together, these results suggest that, at the basal level, ∆40p53 works similarly to p53α in suppressing cellular mobility and proliferation, although the role of Δ40p53 may be cell context-specific.


Subject(s)
Breast Neoplasms/pathology , Neoplasm Invasiveness , Neoplasm Metastasis , Protein Isoforms/physiology , Tumor Suppressor Protein p53/physiology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Protein Isoforms/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Protein p53/genetics
2.
Oncoimmunology ; 5(3): e1112941, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27141366

ABSTRACT

Activated antigen-presenting cells (APC) deliver the three signals cytotoxic T cells require to differentiate into effector cells that destroy the tumor. These comprise antigen, co-stimulatory signals and cytokines. Once these cells have carried out their function, they apoptose. We hypothesized that the tumor suppressor protein, p53, played an important role in generating the antitumor response facilitated by APC. CD11c+ APC derived from p53 wild-type (wt) mouse (wt p53) GM-CSF bone marrow cultures (BMAPC) and activated had reduced survival compared to BMAPC from p53 null consistent with p53-mediated apoptosis following activation. There was a lower percentage of antigenic peptide/MHC I complexes on antigen-pulsed p53 null cells suggesting p53 played a role in antigen processing but there was no difference in antigen-specific T cell proliferative responses to these cells in vivo. In contrast, antigen-specific cytotoxicity in vivo was markedly reduced in response to p53 null BMAPC. When these cells were pulsed with a model tumor antigen and delivered as a prophylactic vaccination, they provided no protection against melanoma cell growth whereas wt BMAPC were very effective. This suggested that p53 might regulate the requisite third signal and, indeed, we found that p53 null BMAPC produced less IL-12 than wt p53 BMAPC and that p53 bound to the promoter region of IL-12. This work suggests that p53 in activated BMAPC is associated with the generation of IL-12 required for the differentiation of cytotoxic immune responses and an effective antitumor response. This is a completely new role for this protein that has implications for BMAPC-mediated immunotherapy.

3.
Biotechniques ; 53(4): 239-44, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23046507

ABSTRACT

Here we describe a method for growing fibroblasts from human skin explants that increases the number of cells obtained by up to two orders of magnitude, thus increasing the amount of material available for research and diagnostic purposes and potentially for cell-based therapies. Explants can be transferred sequentially up to 80 times, if required, at which point the explants appear to be completely depleted of fibroblasts. Utilizing skin samples obtained from 16 donors, aged 18-66 years old, the first 20 transfers produced cultures with lifespan and growth characteristics that were all very similar to each other, but the cultures derived from later transfers had a decreasing replicative capacity. Final cumulative population doublings did not correlate with donor age, but correlated positively with the telomere length at early passage. We also demonstrated that explants can be transduced directly by lentiviral infection, and that cryopreserved tissue can be explanted successfully using this procedure.


Subject(s)
Cell Separation/methods , Fibroblasts/cytology , Skin/cytology , Adolescent , Adult , Aged , Animals , Cell Culture Techniques , Cryopreservation , Female , Humans , Lentivirus , Mice , Middle Aged , Young Adult
4.
Cell Cycle ; 11(3): 446-50, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22262184

ABSTRACT

Autoimmune diseases are characterized by the immune system mounting a response against self. The exact etiology of autoimmune diseases and autoimmunity remain unclear. Here, we demonstrate that Δ133p53, an isoform of the tumor suppressor protein p53, is involved in the development of autoimmunity. We have previously generated a mouse model of Δ133p53 (Δ122p53). Δ122p53 mice develop an autoimmune/ inflammation-like phenotype that includes the production of autoantibodies, elevated levels of pro-inflammatory cytokines and lymphocyte aggregations in various organs. Microarray analysis reveals that expression of Δ122p53 induces a number of pro-inflammatory genes, including the STAT1 pathway and interferon-related transcription profile. Comparative genetic signatures have been observed in human SLE (systemic lupus erythematosus) patients, and we show that Δ133p53 regulates STAT1 in human cells. Our findings provide the first evidence of a role for p53 isoforms in the development of autoimmune disease.


Subject(s)
Autoimmune Diseases/metabolism , Inflammation/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Autoantibodies/blood , Autoimmune Diseases/genetics , Autoimmunity/genetics , Cell Line, Tumor , Cytokines/metabolism , Gene Expression Profiling , Humans , Inflammation/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , Lymphocytes/immunology , Lymphocytes/metabolism , Mice , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Isoforms/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/immunology
5.
J Cell Sci ; 122(Pt 16): 2989-95, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19638413

ABSTRACT

In normal cells, p53 protein is maintained at low levels, but the levels increase after stress or inappropriate growth signals to coordinate growth arrest or apoptosis. Human mammary epithelial cells (HMECs) are unusual in that they exhibit two phases of growth. The second growth phase, referred to as post-selection, follows a period of temporary growth arrest and is characterized by the absence of p16(INK4a) (also known as CDK4I and p16-INK4a) expression. Previously, we observed that post-selection HMECs have elevated levels of p53. Exogenous p16(INK4a) expression decreased levels of both p53 transcript and protein, and this effect was inhibited by nutlin-3a, indicating that p16(INK4a) can regulate p53 expression by affecting both p53 transcription and Mdm2-dependent degradation of p53. The p53 in post-selection HMECs was wild type and, as expected, increased p53 expression was associated with elevated p21(WAF1/CIP1) and Mdm2 levels; the p53 response to DNA damage seemed normal. Despite elevated levels of wild-type p53 and p21(WAF1/CIP1), post-selection cells grew more rapidly than their pre-selection HMEC precursors. We found that the post-selection HMECs contain a truncated Mdm2 protein (p60), which presumably lacks the p53 ubiquitylation domain. We propose that the increased levels of p53 in post-selection HMECs are due to the presence of an Mdm2 fragment that binds p53 but does not result in its degradation.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Mammary Glands, Human/cytology , Tumor Suppressor Protein p53/metabolism , Cell Division , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p16/metabolism , DNA Damage , Humans , Models, Biological , Protein Processing, Post-Translational , Protein Stability , Proto-Oncogene Proteins c-mdm2/metabolism , Transcription, Genetic , Tumor Suppressor Protein p53/genetics
6.
Cancer Res ; 68(14): 5724-32, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18632625

ABSTRACT

Paired box (PAX) developmental genes are frequently expressed in cancers and confer survival advantages on cancer cells. We have previously found that PAX genes are deregulated in glioma. We have now investigated the expression of PAX genes in glioma and their role in telomere maintenance. The mRNA level of PAX8 showed a positive correlation with telomerase activity in glioma biopsies (r(2) = 0.75, P < 0.001) and in established glioma cell lines (r(2) = 0.97, P = 0.0025). We found that PAX8 is able to coordinately transactivate the promoter for both the telomerase catalytic subunit (hTERT) and the telomerase RNA component (hTR) genes. By electrophoretic mobility shift assay, quantitative PCR, and a telomerase activity assay, we show that PAX8 binds directly to the hTERT and hTR promoters, up-regulating hTERT and hTR mRNA, as well as telomerase activity. Additionally, PAX8 small interfering RNA down-regulated hTERT and hTR. Collectively, these results show that PAX8 may have a role in telomerase regulation.


Subject(s)
Brain Neoplasms/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioma/metabolism , Paired Box Transcription Factors/metabolism , RNA/metabolism , Telomerase/metabolism , Base Sequence , Cell Line, Tumor , Down-Regulation , Humans , Models, Biological , Molecular Sequence Data , PAX8 Transcription Factor , Sequence Homology, Nucleic Acid , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...