Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
2.
Nature ; 629(8011): 370-375, 2024 May.
Article in English | MEDLINE | ID: mdl-38600390

ABSTRACT

Roads are expanding at the fastest pace in human history. This is the case especially in biodiversity-rich tropical nations, where roads can result in forest loss and fragmentation, wildfires, illicit land invasions and negative societal effects1-5. Many roads are being constructed illegally or informally and do not appear on any existing road map6-10; the toll of such 'ghost roads' on ecosystems is poorly understood. Here we use around 7,000 h of effort by trained volunteers to map ghost roads across the tropical Asia-Pacific region, sampling 1.42 million plots, each 1 km2 in area. Our intensive sampling revealed a total of 1.37 million km of roads in our plots-from 3.0 to 6.6 times more roads than were found in leading datasets of roads globally. Across our study area, road building almost always preceded local forest loss, and road density was by far the strongest correlate11 of deforestation out of 38 potential biophysical and socioeconomic covariates. The relationship between road density and forest loss was nonlinear, with deforestation peaking soon after roads penetrate a landscape and then declining as roads multiply and remaining accessible forests largely disappear. Notably, after controlling for lower road density inside protected areas, we found that protected areas had only modest additional effects on preventing forest loss, implying that their most vital conservation function is limiting roads and road-related environmental disruption. Collectively, our findings suggest that burgeoning, poorly studied ghost roads are among the gravest of all direct threats to tropical forests.


Subject(s)
Automobiles , Conservation of Natural Resources , Forestry , Forests , Trees , Tropical Climate , Asia , Conservation of Natural Resources/statistics & numerical data , Conservation of Natural Resources/trends , Trees/growth & development , Datasets as Topic , Forestry/methods , Forestry/statistics & numerical data , Forestry/trends
3.
Glob Chang Biol ; 30(1): e17140, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273497

ABSTRACT

Growing evidence suggests that liana competition with trees is threatening the global carbon sink by slowing the recovery of forests following disturbance. A recent theory based on local and regional evidence further proposes that the competitive success of lianas over trees is driven by interactions between forest disturbance and climate. We present the first global assessment of liana-tree relative performance in response to forest disturbance and climate drivers. Using an unprecedented dataset, we analysed 651 vegetation samples representing 26,538 lianas and 82,802 trees from 556 unique locations worldwide, derived from 83 publications. Results show that lianas perform better relative to trees (increasing liana-to-tree ratio) when forests are disturbed, under warmer temperatures and lower precipitation and towards the tropical lowlands. We also found that lianas can be a critical factor hindering forest recovery in disturbed forests experiencing liana-favourable climates, as chronosequence data show that high competitive success of lianas over trees can persist for decades following disturbances, especially when the annual mean temperature exceeds 27.8°C, precipitation is less than 1614 mm and climatic water deficit is more than 829 mm. These findings reveal that degraded tropical forests with environmental conditions favouring lianas are disproportionately more vulnerable to liana dominance and thus can potentially stall succession, with important implications for the global carbon sink, and hence should be the highest priority to consider for restoration management.


Des preuves de plus en plus nombreuses suggèrent que la competition entre lianes et les arbres menace le puits de carbone mondial en ralentissant la récupération des forêts après une perturbation. Une théorie récente, fondée sur des observations locales et régionales, propose en outre que le succès compétitif des lianes sur les arbres est dû aux interactions entre la perturbation forestière et le climat. Nous présentons la première évaluation mondiale de la performance relative des lianes par rapport aux arbres en réponse aux perturbations forestières et aux facteurs climatiques. En utilisant un ensemble de données sans précédent, nous avons analysé 651 échantillons de végétation représentant 26,538 lianes et 82,802 arbres, issus de 556 emplacements uniques dans le monde entier, tirés de 83 publications. Les résultats montrent que les lianes ont de meilleure performances par rapport aux arbres (augmentation du ratio liane-arbre) lorsque les forêts sont perturbées, sous des zones chaudes aves précipitations faibles, et vers les basses altitudes tropicales. Nous avons également constaté que les lianes peuvent être un facteur critique entravant la récupération des forêts dans les forêts perturbées connaissant des climats favorables aux lianes, car les données de chronoséquence montrent que le succès compétitif élevé des lianes sur les arbres peut persister pendant des décennies après les perturbations, surtout lorsque la température annuelle moyenne dépasse 27.8°C, que les précipitations sont inférieures à 1614 mm et que le déficit hydrique climatique est supérieur à 829 mm. Ces découvertes révèlent que les forêts tropicales dégradées avec des conditions environnementales favorables aux lianes sont disproportionnellement plus vulnérables à la dominance des lianes, et peuvent ainsi potentiellement entraver la succession, avec d'importantes implications pour le puits de carbone mondial et devraient donc être la plus haute priorité à considérer pour la gestion de la restauration.


Subject(s)
Trees , Tropical Climate , Trees/physiology , Forests , Carbon Sequestration , Water
4.
PLoS One ; 15(3): e0229614, 2020.
Article in English | MEDLINE | ID: mdl-32126070

ABSTRACT

The forests of Borneo-the third largest island on the planet-sustain some of the highest biodiversity and carbon storage in the world. The forests also provide vital ecosystem services and livelihood support for millions of people in the region, including many indigenous communities. The Pan-Borneo Highway and several hydroelectric dams are planned or already under construction in Sarawak, a Malaysian state comprising part of the Borneo. This development seeks to enhance economic growth and regional connectivity, support community access to services, and promote industrial development. However, the implications of the development of highway and dams for forest integrity, biodiversity and ecosystem services remained largely unreported. We assessed these development projects using fine-scale biophysical and environmental data and found several environmental and socioeconomic risks associated with the projects. The highway and hydroelectric dam projects will impact 32 protected areas including numerous key habitats of threatened species such as the proboscis monkey (Nasalis larvatus), Sarawak surili (Presbytis chrysomelas), Bornean orangutans (Pongo pygmaeus) and tufted ground squirrel (Rheithrosciurus macrotis). Under its slated development trajectory, the local and trans-national forest connectivity between Malaysian Borneo and Indonesian Borneo would also be substantially diminished. Nearly ~161 km of the Pan-Borneo Highway in Sarawak will traverse forested landscapes and ~55 km will traverse carbon-rich peatlands. The 13 hydroelectric dam projects will collectively impact ~1.7 million ha of forest in Sarawak. The consequences of planned highway and hydroelectric dams construction will increase the carbon footprint of development in the region. Moreover, many new road segments and hydroelectric dams would be built on steep slopes in high-rainfall zones and forested areas, increasing both construction and ongoing maintenance costs. The projects would also alter livelihood activities of downstream communities, risking their long-term sustainability. Overall, our findings identify major economic, social and environmental risks for several planned road segments in Sarawak-such as those between Telok Melano and Kuching; Sibu and Bintulu; and in the Lambir, Limbang and Lawas regions-and dam projects-such as Tutoh, Limbang, Lawas, Baram, Linau, Ulu Air and Baleh dams. Such projects need to be reviewed to ensure they reflect Borneo's unique environmental and forest ecosystem values, the aspirations of local communities and long-term sustainability of the projects rather than being assessed solely on their short-term economic returns.


Subject(s)
Conservation of Natural Resources/trends , Forests , Sustainable Development/trends , Animals , Biodiversity , Borneo , Carbon Sequestration , Climate Change , Conservation of Natural Resources/economics , Conservation of Natural Resources/legislation & jurisprudence , Economic Development , Ecosystem , Endangered Species , Humans , Indonesia , Malaysia , Power Plants/trends , Public Policy , Sustainable Development/economics , Sustainable Development/legislation & jurisprudence
5.
PLoS One ; 14(9): e0221947, 2019.
Article in English | MEDLINE | ID: mdl-31532810

ABSTRACT

The Heart of Borneo initiative has promoted the integration of protected areas and sustainably-managed forests across Malaysia, Indonesia, and Brunei. Recently, however, member states of the Heart of Borneo have begun pursuing ambitious unilateral infrastructure-development schemes to accelerate economic growth, jeopardizing the underlying goal of trans-boundary integrated conservation. Focusing on Sabah, Malaysia, we highlight conflicts between its Pan-Borneo Highway scheme and the regional integration of protected areas, unprotected intact forests, and conservation-priority forests. Road developments in southern Sabah in particular would drastically reduce protected-area integration across the northern Heart of Borneo region. Such developments would separate two major clusters of protected areas that account for one-quarter of all protected areas within the Heart of Borneo complex. Sabah has proposed forest corridors and highway underpasses as means of retaining ecological connectivity in this context. Connectivity modelling identified numerous overlooked areas for connectivity rehabilitation among intact forest patches following planned road development. While such 'linear-conservation planning' might theoretically retain up to 85% of intact-forest connectivity and integrate half of the conservation-priority forests across Sabah, in reality it is very unlikely to achieve meaningful ecological integration. Moreover, such measure would be exceedingly costly if properly implemented-apparently beyond the operating budget of relevant Malaysian authorities. Unless critical road segments are cancelled, planned infrastructure will fragment important conservation landscapes with little recourse for mitigation. This likelihood reinforces earlier calls for the legal recognition of the Heart of Borneo region for conservation planning as well as for enhanced tri-lateral coordination of both conservation and development.


Subject(s)
Conservation of Natural Resources/methods , Borneo , Brunei , Economic Development , Ecosystem , Forests , Indonesia , Malaysia
6.
PLoS One ; 14(7): e0219408, 2019.
Article in English | MEDLINE | ID: mdl-31339902

ABSTRACT

The island of New Guinea hosts the third largest expanse of tropical rainforest on the planet. Papua New Guinea-comprising the eastern half of the island-plans to nearly double its national road network (from 8,700 to 15,000 km) over the next three years, to spur economic growth. We assessed these plans using fine-scale biophysical and environmental data. We identified numerous environmental and socioeconomic risks associated with these projects, including the dissection of 54 critical biodiversity habitats and diminished forest connectivity across large expanses of the island. Key habitats of globally endangered species including Goodfellow's tree-kangaroo (Dendrolagus goodfellowi), Matchie's tree kangaroo (D. matschiei), and several birds of paradise would also be bisected by roads and opened up to logging, hunting, and habitat conversion. Many planned roads would traverse rainforests and carbon-rich peatlands, contradicting Papua New Guinea's international commitments to promote low-carbon development and forest conservation for climate-change mitigation. Planned roads would also create new deforestation hotspots via rapid expansion of logging, mining, and oil-palm plantations. Our study suggests that several planned road segments in steep and high-rainfall terrain would be extremely expensive in terms of construction and maintenance costs. This would create unanticipated economic challenges and public debt. The net environmental, social, and economic risks of several planned projects-such as the Epo-Kikori link, Madang-Baiyer link, Wau-Malalaua link, and some other planned projects in the Western and East Sepik Provinces-could easily outstrip their overall benefits. Such projects should be reconsidered under broader environmental, economic, and social grounds, rather than short-term economic considerations.


Subject(s)
Sustainable Development , Biodiversity , Conservation of Natural Resources , Forests , Geography , Papua New Guinea , Rain , Risk
7.
Sci Rep ; 9(1): 7812, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31127172

ABSTRACT

While the conservation role of remaining natural habitats in anthropogenic landscapes is clear, the degree to which agricultural matrices impose limitations to animal use is not well understood, but vital to assess species' resilience to land use change. Using an occupancy framework, we evaluated how oil palm plantations affect the occurrence and habitat use of terrestrial mammals in the Colombian Llanos. Further, we evaluated the effect of undergrowth vegetation and proximity to forest on habitat use within plantations. Most species exhibited restricted distributions across the study area, especially in oil palm plantations. Habitat type strongly influenced habitat use of four of the 12 more widely distributed species with oil palm negatively affecting species such as capybara and naked-tailed armadillo. The remaining species showed no apparent effect of habitat type, but oil palm and forest use probabilities varied among species. Overall, generalist mesocarnivores, white-tailed deer, and giant anteater were more likely to use oil palm while the remaining species, including ocelot and lesser anteater, showed preferences for forest. Distance to nearest forest had mixed effects on species habitat use, while understory vegetation facilitated the presence of species using oil palm. Our findings suggest that allowing undergrowth vegetation inside plantations and maintaining nearby riparian corridors would increase the likelihood of terrestrial mammals' occurrence within oil palm landscapes.


Subject(s)
Agriculture , Conservation of Natural Resources , Ecosystem , Forests , Animals , Colombia , Deer , Didelphis/physiology , Eutheria/physiology , Felidae/physiology , Foxes/physiology , Palm Oil/metabolism
8.
Sci Rep ; 9(1): 140, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30644427

ABSTRACT

Indonesian Borneo (Kalimantan) sustains ~37 million hectares of native tropical forest. Numerous large-scale infrastructure projects aimed at promoting land-development activities are planned or ongoing in the region. However, little is known of the potential impacts of this new infrastructure on Bornean forests or biodiversity. We found that planned and ongoing road and rail-line developments will have many detrimental ecological impacts, including fragmenting large expanses of intact forest. Assuming conservatively that new road and rail projects will influence only a 1 km buffer on either side, landscape connectivity across the region will decline sharply (from 89% to 55%) if all imminently planned projects proceed. This will have particularly large impacts on wide-ranging, rare species such as rhinoceros, orangutans, and elephants. Planned developments will impact 42 protected areas, undermining Indonesian efforts to achieve key targets under the Convention on Biological Diversity. New infrastructure will accelerate expansion in intact or frontier regions of legal and illegal logging and land colonization as well as illicit mining and wildlife poaching. The net environmental, social, financial, and economic risks of several imminent projects-such as parallel border roads in West, East, and North Kalimantan, new Trans-Kalimantan road developments in Central Kalimantan and North Kalimantan, and freeways and rail lines in East Kalimantan-could markedly outstrip their overall benefits. Such projects should be reconsidered in light of rigorous cost-benefit frameworks.


Subject(s)
Ecosystem , Forests , Social Planning , Animals , Animals, Wild , Biodiversity , Borneo , Conservation of Natural Resources , Endangered Species , Indonesia
9.
Sci Total Environ ; 655: 255-262, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30471593

ABSTRACT

Large old trees are keystone ecological structures that provide vital ecosystem services to humans. However, there are few large-scale empirical studies on patterns of diversity and density of large old trees in human-dominated landscapes. We present the results of the first nationwide study in China to investigate the patterns of diversity and density of large old trees in human-dominated landscapes. We collated data on 682,730 large trees ≥100 years old from 198 Chinese regions to quantify tree species diversity, tree density and maximum tree age patterns. We modelled the effects of natural environmental variables (e.g. climate and topography) and anthropogenic variables (e.g. human population density and city age) on these measures. We found a low density of large old trees across study regions (0.36 trees/km2), and large variation in species richness among regions (ranging from 1 to 232 species). More than 95% of trees were <500 years old. The best fit models showed that: (1) Species diversity (species richness adjusted by region size) was positively associated with mean annual rainfall and city age; (2) Density of clustered trees, which are mostly remnants of ancient woods, was negatively influenced by human population density and rural population (% of total population). In contrast, the density of scattered trees, which are mostly managed by local people, was positively correlated with mean annual rainfall and human population density. To better protect large old trees in cities and other highly-populated areas, conservation policy should protect ancient wood remnants, mitigate the effects environmental change (e.g. habitat fragmentation), minimize the negative effects of human activities (e.g. logging), and mobilize citizens to participate in conservation activities (e.g. watering trees during droughts).


Subject(s)
Environmental Monitoring/methods , Trees/classification , Trees/growth & development , Biodiversity , China , Cities , Humans , Population Density , Rain
10.
Mol Ecol Resour ; 18(6): 1282-1298, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29877042

ABSTRACT

The use of environmental DNA (eDNA) has become an applicable noninvasive tool with which to obtain information about biodiversity. A subdiscipline of eDNA is iDNA (invertebrate-derived DNA), where genetic material ingested by invertebrates is used to characterize the biodiversity of the species that served as hosts. While promising, these techniques are still in their infancy, as they have only been explored on limited numbers of samples from only a single or a few different locations. In this study, we investigate the suitability of iDNA extracted from more than 3,000 haematophagous terrestrial leeches as a tool for detecting a wide range of terrestrial vertebrates across five different geographical regions on three different continents. These regions cover almost the full geographical range of haematophagous terrestrial leeches, thus representing all parts of the world where this method might apply. We identify host taxa through metabarcoding coupled with high-throughput sequencing on Illumina and IonTorrent sequencing platforms to decrease economic costs and workload and thereby make the approach attractive for practitioners in conservation management. We identified hosts in four different taxonomic vertebrate classes: mammals, birds, reptiles and amphibians, belonging to at least 42 different taxonomic families. We find that vertebrate blood ingested by haematophagous terrestrial leeches throughout their distribution is a viable source of DNA with which to examine a wide range of vertebrates. Thus, this study provides encouraging support for the potential of haematophagous terrestrial leeches as a tool for detecting and monitoring terrestrial vertebrate biodiversity.


Subject(s)
Blood Chemical Analysis/methods , DNA Barcoding, Taxonomic/methods , Environmental Monitoring/methods , Leeches/growth & development , Metagenomics/methods , Amphibians/parasitology , Animals , Birds/parasitology , High-Throughput Nucleotide Sequencing/methods , Mammals/parasitology , Reptiles/parasitology
11.
Ecol Evol ; 8(8): 4237-4251, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29721294

ABSTRACT

Closed-canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species-conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree-species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0-100-m transect from edge to forest interior) on the liana community and liana-host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana-infested trees, and determinants of the rates of tree infestation within five forest fragments (23-58 ha in area) and five nearby intact-forest sites. Fragmented forests experienced considerable disturbance-induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small-sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low-disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.

12.
Curr Biol ; 28(11): R650-R651, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29731303

ABSTRACT

Nater et al.[1] recently identified a new orangutan species (Pongo tapanuliensis) in northern Sumatra, Indonesia - only the seventh described species of living great ape. The population of this critically-endangered species is perilously small, at only ∼800 individuals [1], ranking it among the planet's rarest animals. We assert that P. tapanuliensis is highly vulnerable to extinction because its remaining habitat is small, fragmented and poorly protected. While road incursions within its habitat are modest - road density is only one-eighth that of northern Sumatra - over one-fifth of its habitat is zoned for agricultural conversion or is composed of mosaic agricultural and regrowth/degraded forest. Additionally, a further 8% will be affected by flooding and infrastructure development for a hydroelectric project. We recommend urgent steps to increase the chance that P. tapanuliensis will persist in the wild.


Subject(s)
Pongo pygmaeus , Pongo , Animals , Ecosystem , Genomics , Indonesia
13.
PLoS One ; 13(5): e0197539, 2018.
Article in English | MEDLINE | ID: mdl-29795615

ABSTRACT

The rapid expansion of oil palm cultivation in the Neotropics has generated great debate around possible biodiversity impacts. Colombia, for example, is the largest producer of oil palm in the Americas, but the effects of oil palm cultivation on native fauna are poorly understood. Here, we compared how richness, abundance and composition of terrestrial mammal species differ between oil palm plantations and riparian forest in the Colombian Llanos region. Further, we determined the relationships and influence of landscape and habitat level variables on those metrics. We found that species richness and composition differed significantly between riparian forest and oil palm, with site level richness inside oil palm plantations 47% lower, on average, than in riparian forest. Within plantations, mammalian species richness was strongly negatively correlated with cattle abundance, and positively correlated with the density of undergrowth vegetation. Forest structure characteristics appeared to have weak and similar effects on determining mammal species richness and composition along riparian forest strips. Composition at the landscape level was significantly influenced by cover type, percentage of remaining forest and the distance to the nearest town, whereas within oil palm sites, understory vegetation, cattle relative abundance, and canopy cover had significant effects on community composition. Species specific abundance responses varied between land cover types, with oil palm having positive effects on mesopredators, insectivores and grazers. Our findings suggest that increasing habitat complexity, avoiding cattle and retaining native riparian forest-regardless of its structure-inside oil palm-dominated landscapes would help support higher native mammal richness and abundance at both local and landscape scales.


Subject(s)
Arecaceae , Biodiversity , Ecosystem , Mammals , Animals , Colombia , Geography
14.
Sci Rep ; 8(1): 1622, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29374216

ABSTRACT

We evaluate potential warning signals that may aid in identifying the proximity of ecological communities to biodiversity thresholds from habitat loss-often termed "tipping points"-in tropical forests. We used datasets from studies of Neotropical mammal, frog, bird, and insect communities. Our findings provide only limited evidence that an increase in the variance (heteroskedasticity) of biodiversity-related parameters can provide a general warning signal of impending threshold changes in communities, as forest loss increases. However, such an apparent effect was evident for amphibians in the Brazilian Atlantic Forest and Amazonian mammal and bird communities, suggesting that impending changes in some species assemblages might be predictable. We consider the potential of such warning signs to help forecast drastic changes in biodiversity.


Subject(s)
Biodiversity , Conservation of Natural Resources , Rainforest , Tropical Climate , Animals , Anura/growth & development , Birds/growth & development , Brazil , Insecta/growth & development , Mammals/growth & development
15.
Curr Biol ; 27(20): R1130-R1140, 2017 Oct 23.
Article in English | MEDLINE | ID: mdl-29065299

ABSTRACT

It is projected that 25 million km of new paved roads will be developed globally by 2050 - enough to encircle the planet more than 600 times. Roughly 90% of new roads will be built in developing nations, frequently in tropical and subtropical regions with high biodiversity and environmental values. Many developing nations are borrowing from international lenders or negotiating access to their natural resources in order to expand their transportation infrastructure. Given the unprecedented pace and extent of these initiatives, it is vital to thoroughly assess the potential consequences of large-scale road and highway projects. In appropriate contexts and locales, new roads can promote sizeable economic and social benefits. If poorly planned or implemented, however, new roads can provoke serious cost overruns, corruption and environmental impacts, while generating sparse economic benefits and intense social and political conflict. Using examples from developing nations, we identify risks that can hinder road projects in wet and dry tropical environments. Such risks, we assert, are often inadequately considered by project proponents, evaluators and the general public, creating a systematic tendency to overestimate project benefits while understating project risks. A more precautionary approach is needed to reduce risks while maximizing benefits of new road projects in the tropics.


Subject(s)
Conservation of Natural Resources/economics , Transportation/economics , Tropical Climate , Biodiversity
16.
Sci Rep ; 7(1): 6071, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28729670

ABSTRACT

Human-induced forest fragmentation poses one of the largest threats to global diversity yet its impact on rattans (climbing palms) has remained virtually unexplored. Rattan is arguably the world's most valuable non-timber forest product though current levels of harvesting and land-use change place wild populations at risk. To assess rattan response to fragmentation exclusive of harvesting impacts we examined rattan abundance, demography and ecology within the forests of northeastern, Australia. We assessed the community abundance of rattans, and component adult (>3 m) and juvenile (≤3 m) abundance in five intact forests and five fragments (23-58 ha) to determine their response to a range of environmental and ecological parameters. Fragmented forests supported higher abundances of rattans than intact forests. Fragment size and edge degradation significantly increased adult rattan abundance, with more in smaller fragments and near edges. Our findings suggest that rattan increase within fragments is due to canopy disturbance of forest edges resulting in preferential, high-light habitat. However, adult and juvenile rattans may respond inconsistently to fragmentation. In managed forest fragments, a rattan abundance increase may provide economic benefits through sustainable harvesting practices. However, rattan increases in protected area forest fragments could negatively impact conservation outcomes.


Subject(s)
Calamus , Forests , Rainforest , Tropical Climate , Conservation of Natural Resources , Demography , Ecosystem , Environment
17.
Sci Rep ; 6: 30012, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27435389

ABSTRACT

Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.


Subject(s)
Biomass , Carbon/analysis , Rainforest , Australia , Conservation of Natural Resources , Tropical Climate
18.
Biodivers Data J ; (4): e7599, 2016.
Article in English | MEDLINE | ID: mdl-27099552

ABSTRACT

BACKGROUND: Full floristic data, tree demography, and biomass estimates incorporating non-tree lifeforms are seldom collected and reported for forest plots in the tropics. Established research stations serve as important repositories of such biodiversity and ecological data. With a canopy crane setup within a tropical lowland rainforest estate, the 42-ha Daintree Rainforest Observatory (DRO) in Cape Tribulation, northern Australia is a research facility of international significance. We obtained an estimate of the vascular plant species richness for the site, by surveying all vascular plant species from various mature-phase, remnant and open vegetation patches within the site. We also integrate and report the demography and basal areas of trees ≥ 10 cm diameter at breast height (dbh) in a new 1-ha core plot, an extension to the pre-existing forest 1-ha plot under the canopy crane. In addition, we report for the canopy crane plot new demography and basal areas for smaller-size shrubs and treelets subsampled from nine 20 m(2) quadrats, and liana basal area and abundance from the whole plot. The DRO site has an estimated total vascular plant species richness of 441 species, of which 172 species (39%) are endemic to Australia, and 4 species are endemics to the Daintree region. The 2 x 1-ha plots contains a total of 262 vascular plant species of which 116 (1531 individuals) are tree species ≥ 10 cm dbh. We estimate a stem basal area of 34.9 m(2) ha(-1), of which small stems (tree saplings and shrubs <10cm dbh) and lianas collectively contribute c.4.2%. Comparing the stem density-diversity patterns of the DRO forest with other tropical rainforests globally, our meta-analysis shows that DRO forests has a comparatively high stem density and moderate species diversity, due to the influence of cyclones. These data will provide an important foundation for ecological and conservation studies in lowland tropical forest. NEW INFORMATION: We present a floristic checklist, a lifeform breakdown, and demography data from two 1-ha rainforest plots from a lowland tropical rainforest study site. We also present a meta-analysis of stem densities and species diversity from comparable-sized plots across the tropics.

SELECTION OF CITATIONS
SEARCH DETAIL
...