Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38858085

ABSTRACT

Tumor cells divide rapidly and dramatically alter their metabolism to meet biosynthetic and bioenergetic needs. Through studying the aberrant metabolism of cancer cells, other contexts in which metabolism drives cell state transitions become apparent. In this work, we will discuss how principles established by the field of cancer metabolism have led to discoveries in the contexts of physiology and tissue injury, mammalian embryonic development, and virus infection. We present specific examples of findings from each of these fields that have been shaped by the study of cancer metabolism. We also discuss the next important scientific questions facing these subject areas collectively. Altogether, these examples demonstrate that the study of "cancer metabolism" is indeed the study of cell metabolism in the context of a tumor, and undoubtedly discoveries from each of the fields discussed here will continue to build on each other in the future.

2.
Nat Commun ; 11(1): 4055, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32792504

ABSTRACT

Although metastasis is the most common cause of cancer deaths, metastasis-intrinsic dependencies remain largely uncharacterized. We previously reported that metastatic pancreatic cancers were dependent on the glucose-metabolizing enzyme phosphogluconate dehydrogenase (PGD). Surprisingly, PGD catalysis was constitutively elevated without activating mutations, suggesting a non-genetic basis for enhanced activity. Here we report a metabolic adaptation that stably activates PGD to reprogram metastatic chromatin. High PGD catalysis prevents transcriptional up-regulation of thioredoxin-interacting protein (TXNIP), a gene that negatively regulates glucose import. This allows glucose consumption rates to rise in support of PGD, while simultaneously facilitating epigenetic reprogramming through a glucose-fueled histone hyperacetylation pathway. Restoring TXNIP normalizes glucose consumption, lowers PGD catalysis, reverses hyperacetylation, represses malignant transcripts, and impairs metastatic tumorigenesis. We propose that PGD-driven suppression of TXNIP allows pancreatic cancers to avidly consume glucose. This renders PGD constitutively activated and enables metaboloepigenetic selection of additional traits that increase fitness along glucose-replete metastatic routes.


Subject(s)
Chromatin/metabolism , Glucose/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Animals , Biological Transport/genetics , Biological Transport/physiology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cellular Reprogramming/genetics , Cellular Reprogramming/physiology , Chromatin Immunoprecipitation , Epigenesis, Genetic/genetics , Mice , Mice, Nude , Pancreatic Neoplasms/genetics , Phosphogluconate Dehydrogenase/genetics , Phosphogluconate Dehydrogenase/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism
3.
Proc Natl Acad Sci U S A ; 116(32): 16028-16035, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31253706

ABSTRACT

Diseases associated with mitochondrial DNA (mtDNA) mutations are highly variable in phenotype, in large part because of differences in the percentage of normal and mutant mtDNAs (heteroplasmy) present within the cell. For example, increasing heteroplasmy levels of the mtDNA tRNALeu(UUR) nucleotide (nt) 3243A > G mutation result successively in diabetes, neuromuscular degenerative disease, and perinatal lethality. These phenotypes are associated with differences in mitochondrial function and nuclear DNA (nDNA) gene expression, which are recapitulated in cybrid cell lines with different percentages of m.3243G mutant mtDNAs. Using metabolic tracing, histone mass spectrometry, and NADH fluorescence lifetime imaging microscopy in these cells, we now show that increasing levels of this single mtDNA mutation cause profound changes in the nuclear epigenome. At high heteroplasmy, mitochondrially derived acetyl-CoA levels decrease causing decreased histone H4 acetylation, with glutamine-derived acetyl-CoA compensating when glucose-derived acetyl-CoA is limiting. In contrast, α-ketoglutarate levels increase at midlevel heteroplasmy and are inversely correlated with histone H3 methylation. Inhibition of mitochondrial protein synthesis induces acetylation and methylation changes, and restoration of mitochondrial function reverses these effects. mtDNA heteroplasmy also affects mitochondrial NAD+/NADH ratio, which correlates with nuclear histone acetylation, whereas nuclear NAD+/NADH ratio correlates with changes in nDNA and mtDNA transcription. Thus, mutations in the mtDNA cause distinct metabolic and epigenomic changes at different heteroplasmy levels, potentially explaining transcriptional and phenotypic variability of mitochondrial disease.


Subject(s)
Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Epigenome , Acetyl Coenzyme A/metabolism , Cell Line , Histones/metabolism , Humans , Metabolome , Mitochondria/metabolism , NAD/metabolism , Transcription, Genetic
4.
J Biol Chem ; 294(18): 7259-7268, 2019 05 03.
Article in English | MEDLINE | ID: mdl-30877197

ABSTRACT

ATP-citrate lyase (ACLY) is a major source of nucleocytosolic acetyl-CoA, a fundamental building block of carbon metabolism in eukaryotes. ACLY is aberrantly regulated in many cancers, cardiovascular disease, and metabolic disorders. However, the molecular mechanisms determining ACLY activity and function are unclear. To this end, we investigated the role of the uncharacterized ACLY C-terminal citrate synthase homology domain in the mechanism of acetyl-CoA formation. Using recombinant, purified ACLY and a suite of biochemical and biophysical approaches, including analytical ultracentrifugation, dynamic light scattering, and thermal stability assays, we demonstrated that the C terminus maintains ACLY tetramerization, a conserved and essential quaternary structure in vitro and likely also in vivo Furthermore, we show that the C terminus, only in the context of the full-length enzyme, is necessary for full ACLY binding to CoA. Together, we demonstrate that ACLY forms a homotetramer through the C terminus to facilitate CoA binding and acetyl-CoA production. Our findings highlight a novel and unique role of the C-terminal citrate synthase homology domain in ACLY function and catalysis, adding to the understanding of the molecular basis for acetyl-CoA synthesis by ACLY. This newly discovered means of ACLY regulation has implications for the development of novel ACLY modulators to target acetyl-CoA-dependent cellular processes for potential therapeutic use.


Subject(s)
ATP Citrate (pro-S)-Lyase/metabolism , Coenzyme A/metabolism , Protein Multimerization , ATP Citrate (pro-S)-Lyase/chemistry , Catalysis , Enzyme Stability , Substrate Specificity , Temperature
5.
Cancer Discov ; 9(3): 416-435, 2019 03.
Article in English | MEDLINE | ID: mdl-30626590

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis, and new strategies for prevention and treatment are urgently needed. We previously reported that histone H4 acetylation is elevated in pancreatic acinar cells harboring Kras mutations prior to the appearance of premalignant lesions. Because acetyl-CoA abundance regulates global histone acetylation, we hypothesized that altered acetyl-CoA metabolism might contribute to metabolic or epigenetic alterations that promote tumorigenesis. We found that acetyl-CoA abundance is elevated in KRAS-mutant acinar cells and that its use in the mevalonate pathway supports acinar-to-ductal metaplasia (ADM). Pancreas-specific loss of the acetyl-CoA-producing enzyme ATP-citrate lyase (ACLY) accordingly suppresses ADM and tumor formation. In PDA cells, growth factors promote AKT-ACLY signaling and histone acetylation, and both cell proliferation and tumor growth can be suppressed by concurrent BET inhibition and statin treatment. Thus, KRAS-driven metabolic alterations promote acinar cell plasticity and tumor development, and targeting acetyl-CoA-dependent processes exerts anticancer effects. SIGNIFICANCE: Pancreatic cancer is among the deadliest of human malignancies. We identify a key role for the metabolic enzyme ACLY, which produces acetyl-CoA, in pancreatic carcinogenesis. The data suggest that acetyl-CoA use for histone acetylation and in the mevalonate pathway facilitates cell plasticity and proliferation, suggesting potential to target these pathways.See related commentary by Halbrook et al., p. 326.This article is highlighted in the In This Issue feature, p. 305.


Subject(s)
Acetyl Coenzyme A/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Acetylation , Acinar Cells/metabolism , Acinar Cells/pathology , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation , Female , Genes, ras , Heterografts , Histones/metabolism , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mutation , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Protein Processing, Post-Translational , Signal Transduction
6.
Mol Cell ; 71(3): 398-408, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30075141

ABSTRACT

Nutrient-sensing mechanisms ensure that cellular activities are coordinated with nutrient availability. Recent work has established links between metabolite pools and protein post-translational modifications, as metabolites are substrates of enzymes that add or remove modifications such as acetylation, methylation, and glycosylation. Cancer cells undergo metabolic reprogramming and exhibit metabolic plasticity that allows them to survive and proliferate within the tumor microenvironment. In this article we review the evidence that, in cancer cells, nutrient availability and oncogenic metabolic reprogramming impact the abundance of key metabolites that regulate signaling and epigenetics. We propose models to explain how these metabolites may control locus-specific chromatin modification and gene expression. Finally, we discuss emerging roles of metabolites in regulating malignant phenotypes and tumorigenesis via transcriptional control. An improved understanding of how metabolic alterations in cancer affect nuclear gene regulation could uncover new vulnerabilities to target therapeutically.


Subject(s)
Metabolic Networks and Pathways/physiology , Neoplasms/metabolism , Nutrients/metabolism , Acetylation , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Nucleus/metabolism , Epigenesis, Genetic/genetics , Epigenomics , Gene Expression Regulation, Neoplastic/genetics , Histones/metabolism , Humans , Methylation , Neoplasms/genetics , Neoplasms/physiopathology , Nutrigenomics , Protein Processing, Post-Translational , Signal Transduction
7.
Cell Rep ; 17(4): 1037-1052, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27760311

ABSTRACT

Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA) plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY), cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL) and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency.


Subject(s)
ATP Citrate (pro-S)-Lyase/metabolism , Acetates/metabolism , Glucose/metabolism , ATP Citrate (pro-S)-Lyase/deficiency , Acetate-CoA Ligase/metabolism , Acetates/pharmacology , Acetyl Coenzyme A/metabolism , Acetylation , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Cell Proliferation/drug effects , Cell Survival/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Deletion , Histones/metabolism , Lipid Metabolism/drug effects , Lipids/biosynthesis , Male , Mice , Up-Regulation/drug effects
8.
Oncotarget ; 7(28): 43713-43730, 2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27248322

ABSTRACT

The androgen receptor (AR) plays a central role in prostate tumor growth. Inappropriate reactivation of the AR after androgen deprivation therapy promotes development of incurable castration-resistant prostate cancer (CRPC). In this study, we provide evidence that metabolic features of prostate cancer cells can be exploited to sensitize CRPC cells to AR antagonism. We identify a feedback loop between ATP-citrate lyase (ACLY)-dependent fatty acid synthesis, AMPK, and the AR in prostate cancer cells that could contribute to therapeutic resistance by maintaining AR levels. When combined with an AR antagonist, ACLY inhibition in CRPC cells promotes energetic stress and AMPK activation, resulting in further suppression of AR levels and target gene expression, inhibition of proliferation, and apoptosis. Supplying exogenous fatty acids can restore energetic homeostasis; however, this rescue does not occur through increased ß-oxidation to support mitochondrial ATP production. Instead, concurrent inhibition of ACLY and AR may drive excess ATP consumption as cells attempt to cope with endoplasmic reticulum (ER) stress, which is prevented by fatty acid supplementation. Thus, fatty acid metabolism plays a key role in coordinating ER and energetic homeostasis in CRPC cells, thereby sustaining AR action and promoting proliferation. Consistent with a role for fatty acid metabolism in sustaining AR levels in prostate cancer in vivo, AR mRNA levels in human prostate tumors correlate positively with expression of ACLY and other fatty acid synthesis genes. The ACLY-AMPK-AR network can be exploited to sensitize CRPC cells to AR antagonism, suggesting novel therapeutic opportunities for prostate cancer.


Subject(s)
ATP Citrate (pro-S)-Lyase/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Protein Kinases/metabolism , Receptors, Androgen/metabolism , AMP-Activated Protein Kinase Kinases , Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Feedback, Physiological , Humans , Male , Prostatic Neoplasms, Castration-Resistant/pathology
9.
Cell Metab ; 19(1): 73-83, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24411940

ABSTRACT

Small-molecule ligands of nuclear hormone receptors (NHRs) govern the transcriptional regulation of metazoan development, cell differentiation, and metabolism. However, the physiological ligands of many NHRs remain poorly characterized, primarily due to lack of robust analytical techniques. Using comparative metabolomics, we identified endogenous steroids that act as ligands of the C. elegans NHR, DAF-12, a vitamin D and liver X receptor homolog regulating larval development, fat metabolism, and lifespan. The identified molecules feature unexpected chemical modifications and include only one of two DAF-12 ligands reported earlier, necessitating a revision of previously proposed ligand biosynthetic pathways. We further show that ligand profiles are regulated by a complex enzymatic network, including the Rieske oxygenase DAF-36, the short-chain dehydrogenase DHS-16, and the hydroxysteroid dehydrogenase HSD-1. Our results demonstrate the advantages of comparative metabolomics over traditional candidate-based approaches and provide a blueprint for the identification of ligands for other C. elegans and mammalian NHRs.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Longevity/physiology , Metabolomics , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Cholestenes/chemistry , Cholestenes/metabolism , Gas Chromatography-Mass Spectrometry , Ligands , Magnetic Resonance Spectroscopy , Mutation/genetics , Organ Specificity , Signal Transduction , Steroids/metabolism
10.
ACS Chem Biol ; 7(8): 1321-5, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-22662967

ABSTRACT

In the model organism Caenorhabditis elegans, a class of small molecule signals called ascarosides regulate development, mating, and social behaviors. Ascaroside production has been studied in the predominant sex, the hermaphrodite, but not in males, which account for less than 1% of wild-type worms grown under typical laboratory conditions. Using HPLC-MS-based targeted metabolomics, we show that males also produce ascarosides and that their ascaroside profile differs markedly from that of hermaphrodites. Whereas hermaphrodite ascaroside profiles are dominated by ascr#3, containing an α,ß-unsaturated fatty acid, males predominantly produce the corresponding dihydro-derivative ascr#10. This small structural modification profoundly affects signaling properties: hermaphrodites are retained by attomole-amounts of male-produced ascr#10, whereas hermaphrodite-produced ascr#3 repels hermaphrodites and attracts males. Male production of ascr#10 is population density-dependent, indicating sensory regulation of ascaroside biosynthesis. Analysis of gene expression data supports a model in which sex-specific regulation of peroxisomal ß-oxidation produces functionally different ascaroside profiles.


Subject(s)
Metabolomics/methods , Pheromones/chemistry , Animals , Behavior, Animal , Caenorhabditis elegans , Chemotaxis , Chromatography, High Pressure Liquid/methods , Fatty Acids/chemistry , Fatty Acids, Unsaturated/metabolism , Gene Expression Regulation , Glycosides/chemistry , Male , Mass Spectrometry/methods , Models, Biological , Peroxisomes/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...