Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(3): e90534, 2014.
Article in English | MEDLINE | ID: mdl-24608250

ABSTRACT

A requisite step for canonical Hedgehog (Hh) pathway activation by Sonic Hedgehog (Shh) ligand is accumulation of Smoothened (Smo) to the primary cilium (PC). Activation of the Hh pathway has been implicated in a broad range of cancers, and several Smo antagonists are being assessed clinically, one of which is approved for the treatment of advanced basal cell carcinoma. Recent reports demonstrate that various Smo antagonists differentially impact Smo localization to the PC while still exerting inhibitory activity. In contrast to other synthetic small molecule Smo antagonists, the natural product cyclopamine binds to and promotes ciliary accumulation of Smo and "primes" cells for Hh pathway hyper-responsiveness after compound withdrawal. We compared the properties of IPI-926, a semi-synthetic cyclopamine analog, to cyclopamine with regard to potency, ciliary Smo accumulation, and Hh pathway activity after compound withdrawal. Like cyclopamine, IPI-926 promoted accumulation of Smo to the PC. However, in contrast to cyclopamine, IPI-926 treatment did not prime cells for hyper-responsiveness to Shh stimulation after compound withdrawal, but instead demonstrated continuous inhibition of signaling. By comparing the levels of drug-induced ciliary Smo accumulation with the degree of Hh pathway activity after compound withdrawal, we propose that a critical threshold of ciliary Smo is necessary for "priming" activity to occur. This "priming" appears achievable with cyclopamine, but not IPI-926, and is cell-line dependent. Additionally, IPI-926 activity was evaluated in a murine tumor xenograft model and a pharmacokinetic/pharmacodynamic relationship was examined to assess for in vivo evidence of Hh pathway hyper-responsiveness. Plasma concentrations of IPI-926 correlated with the degree and duration of Hh pathway suppression, and pathway activity did not exceed baseline levels out to 96 hours post dose. The overall findings suggest that IPI-926 possesses unique biophysical and pharmacological properties that result in Hh pathway inhibition in a manner that differentiates it from cyclopamine.


Subject(s)
Cilia/metabolism , Hedgehog Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Veratrum Alkaloids/pharmacology , Animals , Cell Line , Cilia/drug effects , Humans , Mice , NIH 3T3 Cells , Signal Transduction/drug effects , Smoothened Receptor
2.
Mol Cancer Ther ; 13(5): 1259-69, 2014 May.
Article in English | MEDLINE | ID: mdl-24634412

ABSTRACT

Hedgehog (Hh) pathway inhibition in cancer has been evaluated in both the ligand-independent and ligand-dependent settings, where Hh signaling occurs either directly within the cancer cells or within the nonmalignant cells of the tumor microenvironment. Chondrosarcoma is a malignant tumor of cartilage in which there is ligand-dependent activation of Hh signaling. IPI-926 is a potent, orally delivered small molecule that inhibits Hh pathway signaling by binding to Smoothened (SMO). Here, the impact of Hh pathway inhibition on primary chondrosarcoma xenografts was assessed. Mice bearing primary human chondrosarcoma xenografts were treated with IPI-926. The expression levels of known Hh pathway genes, in both the tumor and stroma, and endpoint tumor volumes were measured. Gene expression profiling of tumors from IPI-926-treated mice was conducted to identify potential novel Hh target genes. Hh target genes were studied to determine their contribution to the chondrosarcoma neoplastic phenotype. IPI-926 administration results in downmodulation of the Hh pathway in primary chondrosarcoma xenografts, as demonstrated by evaluation of the Hh target genes GLI1 and PTCH1, as well as inhibition of tumor growth. Chondrosarcomas exhibited autocrine and paracrine Hh signaling, and both were affected by IPI-926. Decreased tumor growth is accompanied by histopathologic changes, including calcification and loss of tumor cells. Gene profiling studies identified genes differentially expressed in chondrosarcomas following IPI-926 treatment, one of which, ADAMTSL1, regulates chondrosarcoma cell proliferation. These studies provide further insight into the role of the Hh pathway in chondrosarcoma and provide a scientific rationale for targeting the Hh pathway in chondrosarcoma.


Subject(s)
Chondrosarcoma/metabolism , Hedgehog Proteins/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Signal Transduction/drug effects , Veratrum Alkaloids/pharmacology , ADAMTS Proteins , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Calcinosis/drug therapy , Calcinosis/genetics , Calcinosis/metabolism , Cell Line, Tumor , Cell Proliferation , Chondrosarcoma/genetics , Chondrosarcoma/pathology , Disease Models, Animal , Extracellular Matrix Proteins/genetics , Humans , Mice , Smoothened Receptor , Tumor Burden/drug effects , Veratrum Alkaloids/administration & dosage , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...