Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
São Paulo; s.n; s.n; 2015. 104+anexos p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-847316

ABSTRACT

Células tumorais desenvolvem diversas estratégias para escapar da identificação e eliminação pelo sistema imune. Dessa forma, a investigação dos mecanismos envolvidos na comunicação celular no microambiente tumoral e na desregulação local do sistema imune é crítica para uma melhor compreensão da progressão da doença e para o desenvolvimento de alternativas terapêuticas mais eficazes. Nós aqui demonstramos que SIGIRR/IL-1R8, um importante regulador negativo de receptores de Interleucina-1 (ILRs) e receptores do tipo Toll (TLRs), apresenta expressão aumentada em uma linhagem celular epitelial mamária transformada pela superexpressão do oncogene HER2 e em tumores primários de mama, e promove o crescimento tumoral e metástase através da modulação da inflamação associada ao câncer e da atenuação da resposta imune antitumoral. Observamos que IL-1R8 tem sua expressão correlacionada com HER2 em tecidos mamários e sua alta expressão é fator de pior prognóstico em câncer de mama de baixo grau. Notavelmente, níveis aumentados de IL-1R8 foram observados especialmente nos subtipos HER2+ e Luminais de tumores de mama, e sua expressão aumentada em células epiteliais de mama transformadas por HER2 diminui a ativação da via de NF-κB e a expressão de diferentes citocinas pro-inflamatórias (IL-6, IL-8, TNF, CSF2, CSF3 e IFN-ß1). Meio condicionado de células transformadas por HER2, mas não de variantes celulares com o gene IL-1R8 silenciado, induz a polarização de macrófagos para o fenótipo M2 e inibe a ativação de células NK. Em um modelo murino transgênico de tumorigênese espontânea mediada por HER2, MMTV-neu, verificamos que a deficiência de IL-1R8 (IL-1R8-/-neu) retardou o aparecimento de tumores e reduziu a incidência, a carga tumoral e a disseminação metastática. Contudo, não foram observadas diferenças significativas no crescimento tumoral quando animais IL-1R8-/-neu receberam medula óssea de animais IL-1R8+/+, confirmando um papel importante da expressão de IL-1R8 em células não hematopoiéticas na tumorigênese da mama. Tumores IL-1R8+/+neu apresentaram maiores níveis de citocinas pró-inflamatórias como IL-1ß e VEGF, e menores níveis da citocina imunomodulatória IFN-γ. Além disso, tumores que expressavam IL-1R8 apresentaram menor infiltrado de células NK maduras, células dendríticas (DCs) e linfócitos T-CD8+ e um maior infiltrado de macrófagos M2 e linfócitos T-CD4+. Coletivamente, esses resultados indicam que a expressão de IL-1R8 em tumores de mama pode representar um novo mecanismo de escape da resposta imune e suportam IL-1R8 como potencial alvo terapêutico


Tumor cells develop numerous strategies to fine-tune inflammation and avoid detection and eradication by the immune system. Identification of new players that regulate the cellular crosstalk within the tumor microenvironment and promote local immune dysregulation is critical to understand disease progression and to improve therapeutic strategies. Here, we demonstrate that SIGIRR/IL-1R8, a negative regulator of IL-1R and TLRs, is up-regulated in a HER2-transformed epithelial mammary cell line and in primary breast tumors and promotes tumor growth and metastasis by modulating cancer-related inflammation and impairing anti-tumor immunity. IL-1R8 expression is correlated with HER2 in mammary tissue, and higher tumor IL-1R8 expression is a poor prognostic factor in lower grade breast tumors. Notably, higher levels of IL-1R8 expression were observed in HER2+ and Luminal breast tumor subtypes and IL-1R8 up-regulation in HER2-transformed mammary epithelial cells inhibited NF-κB activation and the expression of pro-inflammatory cytokines (IL-6, IL-8, TNFα, CSF2, CSF3, IFN-ß1). Conditioned medium from HER2-transformed cells, but not from IL-1R8 knockdown variants, induced M2-macrophage polarization and inhibited natural-killer (NK) cell activation. IL-1R8 deficiency in a transgenic mouse model of breast tumorigenesis (MMTV-neu) significantly delayed tumor onset and reduced tumor incidence, burden and metastasis. No significant differences in tumor growth were observed when IL-1R8-/-neu mice were transplanted with bone marrow from IL-1R8+/+ animals, confirming an important role for IL-1R8 expression in non-hematopoietic cells during breast tumorigenesis. IL-1R8+/+neu mammary tumors presented higher levels of pro-inflammatory cytokines such as IL-1ß and VEGF, but lower levels of IFN-γ. Besides, a lower infiltrate of mature NK cells, dendritic cells (DCs) and CD8+ T cells but higher infiltrate of M2-macrophages and CD4+ T cells were present in IL-1R8 expressing tumors. Collectively, our results support IL-1R8 expression as a novel tumor immune escape mechanism in breast cancer and putative target for immunotherapy


Subject(s)
Mice , Breast Neoplasms/complications , Molecular Biology/education , Neoplastic Cells, Circulating , Hematopoietic Stem Cells , Interleukin-1/analysis , Tumor Burden , Tumor Microenvironment/genetics
2.
PLoS One ; 7(2): e31205, 2012.
Article in English | MEDLINE | ID: mdl-22348056

ABSTRACT

Macrophages are key elements in the inflammatory process, whereas depending on the micro-environmental stimulation they exhibit a pro-inflammatory (classical/M1) or an anti-inflammatory/reparatory (alternative/M2) phenotype. Extracellular ATP can act as a danger signal whereas adenosine generally serves as a negative feedback mechanism to limit inflammation. The local increase in nucleotides communication is controlled by ectonucleotidases, such as members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family and ecto-5'-nucleotidase/CD73 (ecto-5'-NT). In the present work we evaluated the presence of these enzymes in resident mice M1 (macrophages stimulated with LPS), and M2 (macrophages stimulated with IL-4) macrophages. Macrophages were collected by a lavage of the mice (6-8 weeks) peritoneal cavity and treated for 24 h with IL-4 (10 ng/mL) or LPS (10 ng/mL). Nitrite concentrations were measured using the Greiss reaction. Supernatants were harvested to determine cytokines and the ATPase, ADPase and AMPase activities were determined by the malachite green method and HPLC analysis. The expression of selected surface proteins was evaluated by flow cytometry. The results reveal that M1 macrophages presented a decreased ATP and AMP hydrolysis in agreement with a decrease in NTPDase1, -3 and ecto-5'-nucleotidase expression compared to M2. In contrast, M2 macrophages showed a higher ATP and AMP hydrolysis and increased NTPDase1, -3 and ecto-5'-nucleotidase expression compared to M1 macrophages. Therefore, macrophages of the M1 phenotype lead to an accumulation of ATP while macrophages of the M2 phenotype may rapidly convert ATP to adenosine. The results also showed that P1 and P2 purinoreceptors present the same mRNA profile in both phenotypes. In addition, M2 macrophages, which have a higher ATPase activity, were less sensitive to cell death. In conclusion, these changes in ectoenzyme activities might allow macrophages to adjust the outcome of the extracellular purinergic cascade in order to fine-tune their functions during the inflammatory set.


Subject(s)
5'-Nucleotidase/analysis , Gene Expression Profiling , Macrophage Activation/genetics , Pyrophosphatases/analysis , 5'-Nucleotidase/genetics , Adenosine/biosynthesis , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Animals , Mice , Pyrophosphatases/genetics , RNA, Messenger/analysis , Receptors, Purinergic P1/genetics , Receptors, Purinergic P2/genetics
3.
Thromb Res ; 125(3): e87-92, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19850326

ABSTRACT

Hyperhomocysteinemia is an independent risk factor for atherothrombotic disease. Platelets play an important role in cardiovascular disease and release pro-aggregates mediators when activated, such as ADP, a physiological agonist involved in normal hemostasis and thrombosis. NTPDases and 5'-nucleotidase are ecto-enzymes that hydrolyze ATP, ADP and AMP to adenosine playing an important role on blood flow and thrombogenesis by regulating ADP catabolism. The aim of the present study was evaluate extracellular adenine nucleotide hydrolysis of rat platelets exposed to homocysteine in vitro and in vivo. In vitro homocysteine (Hcy) in the concentration range of 20 to 500 microM caused a significant decrease on ATP (around 30%) and ADP (around 45%) hydrolysis, respectively, while AMP hydrolysis was not altered. Hcy was not able to inhibit the hydrolysis of ATP and ADP catalyzed by purified apyrase at the same concentrations tested in vitro on platelets, suggesting an indirect effect. The inhibitory effect of Hcy on platelets was prevented by antioxidants agents in vitro and in vivo. Furthermore homocysteine treatment increased platelet aggregation induced by ADP. Based on the results presented herein, we propose that inhibition of extracellular ATP and ADP hydrolysis caused by homocysteine was probably due oxidative stress, since antioxidants prevented such effects. These findings may contribute to an increase platelet response to ADP and consequence development of thrombotic risk attributed to hyperhomocysteinemia.


Subject(s)
Adenine Nucleotides/metabolism , Blood Platelets/drug effects , Blood Platelets/metabolism , Homocysteine/pharmacology , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Apyrase/metabolism , Blood Platelets/enzymology , Catalysis , Dose-Response Relationship, Drug , Extracellular Space/metabolism , Hydrolysis/drug effects , Male , Rats , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...