Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031128

ABSTRACT

The plant cuticle is a complex extracellular lipid barrier that has multiple protective functions. We investigated cuticle deposition by integrating metabolomics and transcriptomics data gathered from six different maize seedling organs of four genotypes, the inbred lines B73 and Mo17, and their reciprocal hybrids. These datasets captured the developmental transition of the seedling from heterotrophic skotomorphogenic growth to autotrophic photomorphogenic growth, which is a transition that is highly vulnerable to environmental stresses. Statistical interrogation of these data reveals that the predominant determinant of cuticle composition is seedling organ type, whereas the seedling genotype has a smaller effect on this phenotype. Gene-to-metabolite associations assessed by integrated statistical analyses identified three gene networks connected with the deposition of different elements of the cuticle: a) cuticular waxes; b) monomers of lipidized cell wall biopolymers, including cutin and suberin; and c) both of these elements. These gene networks reveal three metabolic programs that appear to support cuticle deposition, including processes of chloroplast biogenesis, lipid metabolism, and molecular regulation (e.g., transcription factors, post-translational regulators and phytohormones). This study demonstrates the wider physiological metabolic context that can determine cuticle deposition and lays the groundwork for new targets for modulating properties of this protective barrier.

SELECTION OF CITATIONS
SEARCH DETAIL
...