Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 15(3): 1107-14, 2007 Feb 05.
Article in English | MEDLINE | ID: mdl-19532338

ABSTRACT

Metallic plates embedded between dielectric slabs and perforated by rectangular arrays of subwavelength holes with a dense periodicity in one of the directions support extraordinary transmission (ET) phenomena, viz. strong peaks in the transmittance frequency dependence. Stacks of such perforated plates support ET phenomena with propagation along the stack axis that is characterized by the left handed behavior. The incorporation of the dielectric materials and dense periodicity allows significantly reducing the illuminated area of the perforated plate required experimentally to observe the ET phenomena as compared to the areas required in the case of free standing rectangular hole arrays. This facilitates the experimental investigation of ET under excitation in the Fresnel zone of Gaussian beams.

2.
Opt Express ; 15(13): 8125-34, 2007 Jun 25.
Article in English | MEDLINE | ID: mdl-19547139

ABSTRACT

In this paper we design and measure a metamaterial polarizing device working in the sub-terahertz range. The polarizer is based on a modified version of our previous miniaturized Stacked Hole Array (SHA) structure, an arrangement that combines Extraordinary Optical Transmission (EOT) and Left-Handed Metamaterial (LHM) propagation even under Fresnel illumination. Here, we use a self complementary screen by connecting the holes of an EOT structure. Importantly, EOT remains and simultaneously total reflection is obtained for the orthogonal component. Moreover, by computing the dispersion diagram, we demonstrate that LHM propagation can be achieved for the principal polarization within the stop band of the orthogonal component, which propagates in other bands as a standard forward wave. Finally, we check our conjectures by measuring the transmission and reflection coefficients of screens milled on a low-loss microwave substrate. Measurements have been taken for 1 to 6 stacked wafers and they show clearly that the stack acts as a polarizer with left-handed characteristic. Our results open the way to design of novel polarization control metamaterials at Terahertz wavelengths.

3.
Opt Express ; 14(12): 5445-55, 2006 Jun 12.
Article in English | MEDLINE | ID: mdl-19516710

ABSTRACT

Metamaterial structures are artificial materials that show unconventional electromagnetic properties such as photonic band-gap, extraordinary optical transmission and left-handed propagation. Up to now, relations of photonic crystals and negative refraction have been shown as well as of photonic crystals and sub-wavelength hole arrays. Here we report a left-handed metamaterial engineered by a combination of sub-wavelength hole array plates periodically stacked to form a photonic crystal structure. It is shown the possibility of fine-tuning the metamaterial in order to permit extraordinary optical transmission and left-handed behaviour. Our work demonstrates the feasibility of engineering left-handed metamaterials by just drilling holes in metallic plates and brings together single structure photonic crystals, extraordinary optical transmission and left-handed behaviour.

SELECTION OF CITATIONS
SEARCH DETAIL
...