Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 61(45): e202207834, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36070987

ABSTRACT

The emergence of conductive 2D and less commonly 3D coordination polymers (CPs) and metal-organic frameworks (MOFs) promises novel applications in many fields. However, the synthetic parameters for these electronically complex materials are not thoroughly understood. Here we report a new 3D semiconducting CP Fe5 (C6 O6 )3 , which is a fusion of 2D Fe-semiquinoid materials and 3D cubic Fex (C6 O6 )y materials, by using a different initial redox-state of the C6 O6 linker. The material displays high electrical conductivity (0.02 S cm-1 ), broad electronic transitions, promising thermoelectric behavior (S2 σ=7.0×10-9  W m-1 K-2 ), and strong antiferromagnetic interactions at room temperature. This material illustrates how controlling the oxidation states of redox-active components in conducting CPs/MOFs can be a "pre-synthetic" strategy to carefully tune material topologies and properties in contrast to more commonly encountered post-synthetic modifications.

2.
ACS Earth Space Chem ; 6(8): 2009-2023, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36016758

ABSTRACT

Understanding how to catalytically break the C-H bond of aromatic molecules, such as polycyclic aromatic hydrocarbons (PAHs), is currently a big challenge and a subject of study in catalysis, astrochemistry, and planetary science. In the latter, the study of the breakdown reaction of PAHs on mineral surfaces is important to understand if PAHs are linked to prebiotic molecules in regions of star and planet formation. In this work, we employed a periodic density functional theory along with Grimme's D4 (DFT-D4) approach for studying the adsorption of a sample of PAHs (naphthalene, anthracene, fluoranthene, pyrene, coronene, and benzocoronene) and fullerene on the [010] forsterite surface and its defective surfaces (Fe-doped and Ni-doped surfaces and a MgO-Schottky vacancy) for their implications in catalysis and astrochemistry. On the basis of structural and binding energy analysis, large PAHs and fullerene present stronger adsorption on the pristine, Fe-doped, and Ni-doped forsterite surfaces than small PAHs. On a MgO-Schottky vacancy, parallel adsorption of the PAH leads to the chemisorption process (C-Si and/or C-O bonds), whereas perpendicular orientation of the PAH leads to the catalytic breaking of the aromatic C-H bond via a barrierless reaction. Spin density and charge analysis show that C-H dissociation is promoted by electron donation from the vacancy to the PAH. As a result of the undercoordinated Si and O atoms, the vacancy acts as a Frustrated Lewis Pair (FLP) catalyst. Therefore, a MgO-Schottky vacancy [010] forsterite surface proved to have potential catalytic activity for the activation of C-H bond in aromatic molecules.

3.
Phys Chem Chem Phys ; 24(3): 1869-1876, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34989380

ABSTRACT

Ortho-benzyne is a potentially important precursor for polycyclic aromatic hydrocarbon formation, but much is still unknown about its chemistry. In this work, we report on a combined experimental and theoretical study of the o-benzyne + acetylene reaction and employ double imaging threshold photoelectron photoion coincidence spectroscopy to investigate the reaction products with isomer specificity. Based on photoion mass-selected threshold photoelectron spectra, Franck-Condon simulations, and ionization cross section calculations, we conclude that phenylacetylene and benzocyclobutadiene (PA : BCBdiene) are formed at a non-equilibrium ratio of 2 : 1, respectively, in a pyrolysis microreactor at a temperature of 1050 K and a pressure of ∼20 mbar. The C8H6 potential energy surface (PES) is explored to rationalize the formation of the reaction products. Previously unidentified pathways have been found by considering the open-shell singlet (OSS) character of various C8H6 reactive intermediates. Based on the PES data, a kinetic model is constructed to estimate equilibrium abundances of the two products. New insights into the reaction mechanism - with a focus on the OSS intermediates - and the products formed in the o-benzyne + acetylene reaction provide a greater level of understanding of the o-benzyne reactivity during the formation of aromatic hydrocarbons in combustion environments as well as in outflows of carbon-rich stars.

4.
J Phys Chem A ; 125(13): 2770-2781, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33784098

ABSTRACT

Density functional theory (DFT) has provided deep atomic-level insights into the adsorption behavior of aromatic molecules on solid surfaces. However, modeling the surface phenomena of large molecules on mineral surfaces with accurate plane wave methods (PW) can be orders of magnitude more computationally expensive than localized atomic orbitals (LCAO) methods. In the present work, we propose a less costly approach based on the DFT-D4 method (PBE-D4), using LCAO, to study the interactions of aromatic molecules with the {010} forsterite (Mg2SiO4) surface for their relevance in astrochemistry. We studied the interaction of benzene with the pristine {010} forsterite surface and with transition-metal cations (Fe2+ and Ni2+) using PBE-D4 and a vdW-inclusive density functional (Dion, Rydberg, Schröder, Langreth, and Lundqvist (DRSLL)) with LCAO methods. PBE-D4 shows good agreement with coupled-cluster methods (CCSD(T)) for the binding energy trend of cation complexes and with PW methods for the binding energy of benzene on the forsterite surface with a difference of about 0.03 eV. The basis set superposition error (BSSE) correction is shown to be essential to ensure a correct estimation of the binding energies even when large basis sets are employed for single-point calculations of the optimized structures with smaller basis sets. We also studied the interaction of naphthalene and benzocoronene on pristine and transition-metal-doped {010} forsterite surfaces as a test case for PBE-D4. Yielding results that are in good agreement with the plane wave methods with a difference of about 0.02-0.17 eV, the PBE-D4 method is demonstrated to be effective in unraveling the binding structures and the energetic trends of aromatic molecules on pristine and transition-metal-doped forsterite mineral surfaces. Furthermore, PBE-D4 results are in good agreement with its predecessor PBE-D3(BJM) and with the vdW-inclusive density functionals, as long as transition metals are not involved. Hence, PBE-D4/CP-DZP has been proven to be a robust theory level to study the interaction of aromatic molecules on mineral surfaces.

5.
Phys Chem Chem Phys ; 22(12): 6738-6748, 2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32167097

ABSTRACT

Using density functional theory (DFT), we studied the formation of Stone-Wales defects in pyrene, as a prototype PAH molecule. In addition, we studied the reactivity of the defective and pristine pyrenes toward hydrogenation, a process that can occur in some regions of the interstellar medium. We found that the formation of the defect requires overcoming energies of the order of 8.4 eV, but the defective structure is stable due to the high reverse reaction barrier (approx. 6 eV). We also found that the presence of the defect decreases the sticking barrier for the first hydrogenation and promotes more stable singly and doubly hydrogenated intermediates with respect to that of the pristine pyrene. Finally, our results show that both Stone-Wales pyrene and pristine pyrenes can lead to the formation of H2 through an extraction mechanism involving H atoms attached on distal carbon atoms with energy barriers below 2 eV.

6.
Phys Chem Chem Phys ; 22(3): 1557-1565, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31872819

ABSTRACT

Investigating the hydrogenation of carbonaceous materials is of interest in a wide range of research areas including electronic device development, hydrogen storage, and, in particular, astrocatalytic formation of molecular hydrogen in the universe. Polycyclic Aromatic Hydrocarbons (PAHs) are ubiquitous in space, locking up close to 15% of the elementary carbon. We have used thermal desorption measurements to study the hydrogenation sequence of pentacene from adding one additional H to the fully hydrogenated pentacene species. The experiments reveal that hydrogenated species with an even number of excess H atoms are highly preferred over hydrogenated species with an odd number of H atoms. In addition, the experiments show that specific hydrogenation states of pentacene with 2, 4, 6, 10, 16 and 22 extra H atoms are preferred over other even numbers. We have investigated the structural stability and activation energy barriers for the superhydrogenation of pentacene using Density Functional Theory. The results reveal a preferential hydrogenation pattern set by the activation energy barriers of the hydrogenation steps. Based on these studies, we formulate simple concepts governing the hydrogenation that apply equally well for different PAHs.

7.
ACS Omega ; 4(12): 14849-14859, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31552324

ABSTRACT

Considering the ever-increasing interest in metal-free materials, some potential chemical applications of quasi-molecular boron nitride (BN) derivatives were tested. Specifically, the behavior of BN fragments was analyzed when given defects, producing local electron density changes, were introduced by using topological engineering approaches. The inserted structural faults were Schottky-like divacancy (BN-d) defects, assembled in the fragment frame by the subtraction of one pair of B and N atoms or Stone-Wales (SW) defects. This study is aimed at highlighting the role of these important classes of defects in BN materials hypothesizing their future use in H2-based processes, related to either (i) H2 activation or (ii) H2 production, from preadsorbed hydrogenated molecular species on BN sites. Here, it has been observed that BN species, embodying SW defects, are characterized by endothermic H2 adsorption and fragmentation phenomena in order to guess their potential use in processes based on the transformation or production of hydrogen. On the contrary, in the presence of BN-d defects, and for reasons strictly related to local structural changes occurring along with the hydrogen rearrangements on the defective BN fragments, a possible use can be inferred. Precautions must be however taken to decrease the material rigidity that could actually decrease the ability of the BN fragment to flatten. This conversely seems to be a necessary requirement to have strong exothermic effects, following the rearrangements of the H2 molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...