Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Dent Res ; 99(5): 568-576, 2020 05.
Article in English | MEDLINE | ID: mdl-32105543

ABSTRACT

Porphyromonas gingivalis, like other bacteria belonging to the phylum Bacteroidetes, synthesizes sphingolipids (SLs). However, their exact roles in microbial physiology and their potential role in mediating interactions with their eukaryotic host are unclear. Our working hypothesis for this study was that synthesis of SLs (host-like lipids) affords a mechanism that allows P. gingivalis to persist in homeostasis with its host. In a previous study, we deleted a gene (PG1780 in strain W83) predicted to encode a serine palmitoyl transferase (SPT)-the enzyme that catalyzes the first conserved step in the synthesis of SLs-and we determined that the mutant was unable to synthesize SLs. Here, we characterized the SPT enzyme encoded by PG1780, analyzed the impact of SPT deletion on P. gingivalis gene expression (RNA-Seq analysis), and began to define the impact of SL synthesis on its interactions with host cells. Enzymatic analysis verified that the protein encoded by PG1780 is indeed an SPT. RNA-Seq analysis determined that a lack of SL synthesis results in differential expression of extracytoplasmic function sigma factors, components of the type IX secretion system (T9SS), and CRISPR and cas genes. Our data demonstrate that when human THP1 macrophage-like cells were challenged with the wild type (W83) and the SL-null mutant (W83 ΔSPT), the SL-null strain elicited a robust inflammatory response (elevated IL-1ß, IL-6, IL-10, IL-8, RANTES, and TNFα) while the response to the parent strain W83 was negligible. Interestingly, we also discovered that SLs produced by P. gingivalis can be delivered to host cells independent of cell-to-cell contact. Overall, our results support our working hypothesis that synthesis of SLs by P. gingivalis is central to its ability to manipulate the host inflammatory response, and they demonstrate the integral importance of SLs in the physiology of P. gingivalis.


Subject(s)
Porphyromonas gingivalis , Humans , Macrophages , Sphingolipids
2.
J Bacteriol ; 195(2): 389-98, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23161027

ABSTRACT

The Sinorhizobium meliloti BacA ABC transporter protein plays an important role in its nodulating symbiosis with the legume alfalfa (Medicago sativa). The Mycobacterium tuberculosis BacA homolog was found to be important for the maintenance of chronic murine infections, yet its in vivo function is unknown. In the legume plant as well as in the mammalian host, bacteria encounter host antimicrobial peptides (AMPs). We found that the M. tuberculosis BacA protein was able to partially complement the symbiotic defect of an S. meliloti BacA-deficient mutant on alfalfa plants and to protect this mutant in vitro from the antimicrobial activity of a synthetic legume peptide, NCR247, and a recombinant human ß-defensin 2 (HBD2). This finding was also confirmed using an M. tuberculosis insertion mutant. Furthermore, M. tuberculosis BacA-mediated protection of the legume symbiont S. meliloti against legume defensins as well as HBD2 is dependent on its attached ATPase domain. In addition, we show that M. tuberculosis BacA mediates peptide uptake of the truncated bovine AMP, Bac7(1-16). This process required a functional ATPase domain. We therefore suggest that M. tuberculosis BacA is important for the transport of peptides across the cytoplasmic membrane and is part of a complete ABC transporter. Hence, BacA-mediated protection against host AMPs might be important for the maintenance of latent infections.


Subject(s)
Bacterial Proteins/metabolism , Genetic Complementation Test , Membrane Transport Proteins/deficiency , Membrane Transport Proteins/metabolism , Mycobacterium tuberculosis/genetics , Sinorhizobium meliloti/physiology , Symbiosis , Anti-Infective Agents/pharmacology , Bacterial Proteins/genetics , Medicago sativa/microbiology , Medicago sativa/physiology , Membrane Transport Proteins/genetics , Sinorhizobium meliloti/drug effects , Sinorhizobium meliloti/genetics , beta-Defensins/pharmacology
3.
Biochem Soc Trans ; 34(Pt 2): 251-6, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16545087

ABSTRACT

Mammals have evolved complex self-defence mechanisms to protect themselves from infection. This innate immune system comprises a large family of hundreds of peptides and proteins which have potent antibiotic activity at nanomolar concentrations. The defensins are a group of small cationic peptides which contain a high proportion of positively charged and hydrophobic amino acids. Their exact mechanism of antimicrobial action is unclear, but it is thought that the defensins bind to and disrupt the outer cell membrane which ultimately causes lysis and cell death. They are characterized by six conserved cysteine residues which oxidize to form three intramolecular disulphide (S-S) bonds. The human and mouse defensins have been subdivided into classes based on their sequence, site of expression and the S-S bond connectivity of the cysteine residues. Alpha-defensins are connected by cysteines 1 and 6, 2 and 4, and 3 and 5, whereas beta-defensins have a 1-5, 2-4 and 3-6 cysteine S-S connectivity. We present our structural and functional studies of a novel mouse beta-defensin-related peptide (Defr1) which contains only five cysteine residues. Synthetic Defr1 was more active than its six-cysteine analogue against a large panel of pathogens. High-resolution MS techniques revealed that Defr1 contains an unusual defensin structure. These studies have guided the design of novel peptides to explore the roles of defensins as antibiotics and as stimulants of the immune response.


Subject(s)
Defensins/chemistry , Defensins/metabolism , Animals , Anti-Infective Agents/metabolism , Defensins/classification , Dimerization , Humans , Membrane Proteins/metabolism , Models, Molecular , Neoplasm Proteins/metabolism
4.
Biochem J ; 352 Pt 2: 257-66, 2000 Dec 01.
Article in English | MEDLINE | ID: mdl-11085917

ABSTRACT

The structure of the Escherichia coli flavodoxin NADP(+) oxidoreductase (FLDR) places three arginines (R144, R174 and R184) in the proposed NADPH-binding site. Mutant enzymes produced by site-directed mutagenesis, in which each arginine was replaced by neutral alanine, were characterized. All mutants exhibited decreased NADPH-dependent cytochrome c reductase activity (R144A, 241.6 min(-1); R174A, 132.1 min(-1); R184A, 305.5 min(-1) versus wild type, 338.9 min(-1)) and increased K(m) for NADPH (R144A, 5.3 microM; R174A, 20.2 microM; R184A, 54.4 microM versus wild type, 3.9 microM). The k(cat) value for NADH-dependent cytochrome c reduction was increased for R174A (42.3 min(-1)) and R184A (50.4 min(-1)) compared with the wild type (33.0 min(-1)), consistent with roles for R174 and R184 in discriminating between NADPH/NADH by interaction with the adenosine ribose 2'-phosphate. Stopped-flow studies indicated that affinity (K(d)) for NADPH was markedly reduced in mutants R144A (635 microM) and R184A (2.3 mM) compared with the wild type (<5 microM). Mutant R184A displays the greatest change in pyridine nucleotide preference, with the NADH/NADPH K(d) ratio >175-fold lower than for wild-type FLDR. The rate constant for hydride transfer from NADPH to flavin was lowest for R174A (k(red)=8.82 s(-1) versus 22.63 s(-1) for the wild type), which also exhibited tertiary structure perturbation, as evidenced by alterations in CD and fluorescence spectra. Molecular modelling indicated that movement of the C-terminal tryptophan (W248) of FLDR is necessary to permit close approach of the nicotinamide ring of NADPH to the flavin. The positions of NADPH phosphates in the modelled structure are consistent with the kinetic data, with R174 and R184 located close to the adenosine ribose 2'-phosphate group, and R144 likely to interact with the nicotinamide ribose 5'-phosphate group.


Subject(s)
Escherichia coli/enzymology , NADH, NADPH Oxidoreductases/metabolism , NADP/metabolism , Amino Acid Sequence , Base Sequence , Binding Sites , Crystallography, X-Ray , DNA Primers , Electrophoresis, Polyacrylamide Gel , Kinetics , Models, Molecular , Molecular Probes , Molecular Sequence Data , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/isolation & purification , Protein Conformation , Sequence Homology, Amino Acid , Spectrum Analysis
5.
J Biol Chem ; 275(18): 13888-94, 2000 May 05.
Article in English | MEDLINE | ID: mdl-10788513

ABSTRACT

The gene encoding Escherichia coli biotin synthase (bioB) has been expressed as a histidine fusion protein, and the protein was purified in a single step using immobilized metal affinity chromatography. The His(6)-tagged protein was fully functional in in vitro and in vivo biotin production assays. Analysis of all the published bioB sequences identified a number of conserved residues. Single point mutations, to either serine or threonine, were carried out on the four conserved (Cys-53, Cys-57, Cys-60, and Cys-188) and one non-conserved (Cys-288) cysteine residues, and the purified mutant proteins were tested both for ability to reconstitute the [2Fe-2S] clusters of the native (oxidized) dimer and enzymatic activity. The C188S mutant was insoluble. The wild-type and four of the mutant proteins were characterized by UV-visible spectroscopy, metal and sulfide analysis, and both in vitro and in vivo biotin production assays. The molecular masses of all proteins were verified using electrospray mass spectrometry. The results indicate that the His(6) tag and the C288T mutation have no effect on the activity of biotin synthase when compared with the wild-type protein. The C53S, C57S, and C60S mutant proteins, both as prepared and reconstituted, were unable to covert dethiobiotin to biotin in vitro and in vivo. We conclude that three of the conserved cysteine residues (Cys-53, Cys-57, and Cys-60), all of which lie in the highly conserved "cysteine box" motif, are crucial for [Fe-S] cluster binding, whereas Cys-188 plays a hitherto unknown structural role in biotin synthase.


Subject(s)
Escherichia coli/enzymology , Sulfurtransferases/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Biotin/genetics , Biotin/metabolism , Molecular Sequence Data , Operon/genetics , Sequence Alignment , Substrate Specificity , Sulfurtransferases/metabolism
6.
Biochemistry ; 39(3): 516-28, 2000 Jan 25.
Article in English | MEDLINE | ID: mdl-10642176

ABSTRACT

8-Amino-7-oxononanoate synthase (also known as 7-keto-8-aminopelargonate synthase, EC 2.3.1.47) is a pyridoxal 5'-phosphate-dependent enzyme which catalyzes the decarboxylative condensation of L-alanine with pimeloyl-CoA in a stereospecific manner to form 8(S)-amino-7-oxononanoate. This is the first committed step in biotin biosynthesis. The mechanism of Escherichia coli AONS has been investigated by spectroscopic, kinetic, and crystallographic techniques. The X-ray structure of the holoenzyme has been refined at a resolution of 1.7 A (R = 18.6%, R(free) = 21. 2%) and shows that the plane of the imine bond of the internal aldimine deviates from the pyridine plane. The structure of the enzyme-product external aldimine complex has been refined at a resolution of 2.0 A (R = 21.2%, R(free) = 27.8%) and shows a rotation of the pyridine ring with respect to that in the internal aldimine, together with a significant conformational change of the C-terminal domain and subtle rearrangement of the active site hydrogen bonding. The first step in the reaction, L-alanine external aldimine formation, is rapid (k(1) = 2 x 10(4) M(-)(1) s(-)(1)). Formation of an external aldimine with D-alanine, which is not a substrate, is significantly slower (k(1) = 125 M(-)(1) s(-)(1)). Binding of D-alanine to AONS is enhanced approximately 2-fold in the presence of pimeloyl-CoA. Significant substrate quinonoid formation only occurs upon addition of pimeloyl-CoA to the preformed L-alanine external aldimine complex and is preceded by a distinct lag phase ( approximately 30 ms) which suggests that binding of the pimeloyl-CoA causes a conformational transition of the enzyme external aldimine complex. This transition, which is inferred by modeling to require a rotation around the Calpha-N bond of the external aldimine complex, promotes abstraction of the Calpha proton by Lys236. These results have been combined to form a detailed mechanistic pathway for AONS catalysis which may be applied to the other members of the alpha-oxoamine synthase subfamily.


Subject(s)
Acyltransferases/chemistry , Acyltransferases/metabolism , Escherichia coli/enzymology , Acyl Coenzyme A/metabolism , Alanine/metabolism , Amino Acid Sequence , Bacillus/enzymology , Binding Sites , Crystallography, X-Ray , Hydrogen Bonding , Kinetics , Mass Spectrometry , Models, Molecular , Molecular Sequence Data , Protein Conformation , Spectrophotometry , Substrate Specificity
7.
Acta Crystallogr D Biol Crystallogr ; 55(Pt 5): 1086-8, 1999 May.
Article in English | MEDLINE | ID: mdl-10216290

ABSTRACT

Chloramphenicol 3-O-phosphotransferase (CPT) from Streptomyces venezuelae ISP5230, a novel chloramphenicol-inactivating kinase, has been overexpressed and purified using Escherichia coli as the heterologous host. Crystals of CPT in complex with its substrate chloramphenicol (Cm) were obtained which were suitable for X-ray diffraction. The crystals belong to the cubic space group I4132 with unit-cell dimension a = 200.0 A. The initial CPT crystals diffracted to 3.5 A and the diffraction was improved significantly upon adding acetonitrile and Cm to the crystallization drop. The CPT-Cm crystals diffract to at least 2.8 A resolution.


Subject(s)
Bacterial Proteins , Chloramphenicol/chemistry , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Streptomyces/enzymology , Crystallization , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/isolation & purification , Recombinant Proteins/chemistry
8.
Eur J Biochem ; 257(3): 577-85, 1998 Nov 01.
Article in English | MEDLINE | ID: mdl-9839946

ABSTRACT

The genes encoding the Escherichia coli flavodoxin NADP+ oxidoreductase (FLDR) and flavodoxin (FLD) have been overexpressed in E. coli as the major cell proteins (at least 13.5% and 11.4% of total soluble protein, respectively) and the gene products purified to homogeneity. The FLDR reduces potassium ferricyanide with a kcat of 1610.3 min(-1) and a Km of 23.6 microM, and cytochrome c with a kcat of 141.3 min(-1) and a Km of 17.6 microM. The cytochrome c reductase rate is increased sixfold by addition of FLD and an apparent Km of 6.84 microM was measured for the affinity of the two flavoproteins. The molecular masses of FLDR and FLD apoproteins were determined as 27648 Da and 19606 Da and the isoelectric points as 4.8 and 3.5, respectively. The mass of the FLDR is precisely that predicted from the atomic structure and indicates that residue 126 is arginine, not glutamine as predicted from the gene sequence. FLDR and FLD were covalently crosslinked using 1-ethyl-3(dimethylamino-propyl) carbodiimide to generate a catalytically active heterodimer. The midpoint reduction potentials of the oxidised/semiquinone and semiquinone/hydroquinone couples of both FLDR (-308 mV and -268 mV, respectively) and FLD (-254 mV and -433 mV, respectively) were measured using redox potentiometry. This confirms the electron-transfer route as NADPH-->FLDR-->FLD. Binding of 2' adenosine monophosphate increases the midpoint reduction potentials for both FLDR couples. These data highlight the strong stabilisation of the flavodoxin semiquinone (absorption coefficient calculated as 4933 M(-1) cm(-1) at 583 nm) with respect to the hydroquinone state and indicate that FLD must act as a single electron shuttle from the semiquinone form in its support of cellular functions, and to facilitate catalytic activity of microsomal cytochromes P-450 heterologously expressed in E. coli. Kinetic studies of electron transfer from FLDR/FLD to the fatty acid oxidase P-450 BM3 support this conclusion, indicating a ping-pong mechanism. This is the first report of the potentiometric analysis of the full E. coli NAD(P)H/FLDR/FLD electron-transfer chain; a complex critical to the function of a large number of E. coli redox systems.


Subject(s)
Escherichia coli/metabolism , Flavodoxin/metabolism , NADH, NADPH Oxidoreductases/metabolism , Base Sequence , Cross-Linking Reagents/chemistry , Cytochrome P-450 Enzyme System/metabolism , DNA Primers , Electron Transport , Escherichia coli/enzymology , Flavodoxin/chemistry , NADH, NADPH Oxidoreductases/chemistry , Oxidation-Reduction , Potentiometry
9.
J Mol Biol ; 284(2): 401-19, 1998 Nov 27.
Article in English | MEDLINE | ID: mdl-9813126

ABSTRACT

8-Amino-7-oxononanoate synthase (or 8-amino-7-ketopelargonate synthase; EC 2.3.1.47; AONS) catalyses the decarboxylative condensation of l-alanine and pimeloyl-CoA in the first committed step of biotin biosynthesis. We have cloned, over-expressed and purified AONS from Escherichia coli and determined the crystal structures of the apo and PLP-bound forms of the enzyme. The protein is a symmetrical homodimer with a tertiary structure and active site organisation similar to, but distinct from, those of other PLP-dependent enzymes whose three-dimensional structures are known. The critical PLP-binding lysine of AONS is located at the end of a deep cleft that allows access of the pantothenate arm of pimeloyl-CoA. A cluster of positively charged residues at the entrance to this cleft forms a putative diphosphate binding site for CoA. The structure of E. coli AONS enables identification of the key residues of the PLP-binding site and thus provides a framework with which to understand the biochemical mechanism, which is similar to that catalysed by 5-aminolevulinate synthase and two other alpha-oxoamine synthases. Although AONS has a low overall sequence similarity with the catalytic domains of other alpha-oxoamine synthases, the structure reveals the regions of significant identity to be functionally important. This suggests that the organisation of the conserved catalytic residues in the active site is similar for all enzymes of this sub-class of PLP-dependent enzymes and they share a common mechanism. Knowledge of the three-dimensional structure of AONS will enable characterisation of the structural features of this enzyme sub-family that are responsible for this important type of reaction.


Subject(s)
Acyltransferases/chemistry , Bacterial Proteins/chemistry , Pyridoxal Phosphate/chemistry , Acyl Coenzyme A/metabolism , Acyltransferases/metabolism , Alanine/metabolism , Amino Acid Sequence , Apoenzymes/chemistry , Bacterial Proteins/metabolism , Biotin/biosynthesis , Catalytic Domain , Coenzyme A-Transferases/chemistry , Crystallography, X-Ray , Dimerization , Enzyme Stability , Escherichia coli/enzymology , Evolution, Molecular , Holoenzymes/chemistry , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Homology, Amino Acid , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...