Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 11(2)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35215083

ABSTRACT

We aimed to use echocardiographic (echo) screening to evaluate the risk of Rheumatic Heart Disease (RHD) among the relatives of patients with advanced RHD, who were enrolled in the University Hospital's outpatient clinics from February 2020 to September 2021. Consenting first-degree relatives were invited for echo screening using handheld devices (GE VSCAN) by non-physicians, with remote interpretation. Matched controls (spouses, neighbors) living in the same household were enrolled in a 1:5 fashion. A standard echo (GE Vivid-IQ) was scheduled if abnormalities were observed. In 16 months, 226 relatives and 47 controls of 121 patients were screened, including 129 children, 77 siblings and 20 parents. The mean age was 40 ± 17 years, 67% of the patients were women, and 239 (88%) lived with the index case for >10 years. Echo findings suggestive of RHD were confirmed in zero controls and 14 (7.5%) relatives (p = 0.05): 11 patients had mild/moderate mitral regurgitation, and four were associated with mitral stenosis and abnormal morphology. Two patients had mild aortic regurgitation and abnormal morphology, which were associated with mild aortic and mitral stenosis, and two patients with advanced RHD had bioprostheses in the mitral (2) and aortic (1) positions. In conclusion, first-degree relatives of individuals with clinical RHD are at greater risk of having RHD, on top of socioeconomic conditions.

2.
Cell Physiol Biochem ; 55(S2): 1-12, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33398982

ABSTRACT

BACKGROUND/AIMS: Lung carcinoids are uncommon neuroendocrine tumours. Molecular features of lung carcinoids have been poorly defined. microRNAs (miRNAs) are potent gene expression regulators with important roles in cancer development and progression. However, little is known on the role of miRNAs in the pathogenesis of lung carcinoids. Our goals were to identify commonly deregulated miRNAs in a rare case of lung carcinoid of typical histology with metastasis, as well as map miRNA target genes in pathways potentially associated with disease development and progression. METHODS: miRNA expression profiles were assessed using the TaqMan Low Density Arrays, which is a platform including 384 miRNAs. miRNA profiles were generated in the tumor and its corresponding lymph node metastasis, compared to reference normal lung tissues. Furthermore, miRNA expression was validated in a separate, publicly available external dataset (n=19 typical lung carcinoids; 2/19 were metastatic tumors, compared to six normal lung tissues, GSE77380). Following this analysis, computational tools were applied for data interpretation. miRTarBase was used to determine miRNA-target genes, followed by ToppGene Suite analysis to identify pathways and biological functions. In addition, the expression of genes targeted by miRNAs was validated in a second, separate external dataset (n=13 tumour samples, GSE35679). GEO2R data analysis tool was used in both validation analyses (miRNAs and genes). RESULTS: We identified 15 commonly significantly downregulated miRNAs (fold change, FC≥2 and p<0.05) in the tumour and its paired metastasis, with further decreasing levels in the metastatic lesion. Downregulation of miR-126-3p and miR-146b-5p was validated in the external dataset GSE77380. In addition, SOX2 and TCF4 genes, targeted by miR-126-3p, were consistently overexpressed in a subset of six typical lung carcinoids from the external dataset GSE35679. Pathways analysis showed that miRNAs miR-126-3p and miR-146b-5p target genes with a role in the regulation of adaptive immune response. CONCLUSION: Our results contribute to the identification of miRNA expression changes in a typical lung carcinoid and its corresponding lymph node metastasis. Down-regulated levels of miR-126-3p and miR-146b-5p and target gene over-expression could play a role in the progression of this case of primary typical lung carcinoid to regional metastasis. Identified miRNAs and target genes are potential candidates for validation in a larger number of cases.


Subject(s)
Carcinoid Tumor/genetics , Carcinoid Tumor/immunology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , MicroRNAs/immunology , Adaptive Immunity/genetics , Adult , Biomarkers, Tumor/genetics , Carcinoid Tumor/pathology , Computational Biology/methods , Female , Humans , Lung Neoplasms/pathology , Lymphatic Metastasis , MicroRNAs/genetics , Neoplasm Staging
3.
J Sci Food Agric ; 100(8): 3536-3543, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32240539

ABSTRACT

BACKGROUND: Vitamin A has been reported as a factor influencing marbling deposition in meat from animals. Although the mechanisms by which vitamin A regulates lipid metabolism in mature adipocytes are already well-established, information regarding molecular mechanisms underlying the effects of vitamin A on the regulation of intramuscular fat deposition in beef cattle still remains limited. The present study aimed to assess the molecular mechanisms involved in the intramuscular fat deposition in beef cattle supplemented with vitamin A during the fattening phase using a proteomic approach. RESULTS: Vitamin A supplementation during the fattening phase decreased intramuscular fat deposition in beef cattle. Proteome and phospho-proteome analysis together with biological and networking analysis of the protein differentially abundant between treatments indicated that Vitamin A supplementation affects the overall energy metabolism of skeletal muscle, impairing lipid biosynthesis in skeletal muscle. CONCLUSION: Vitamin A supplementation at fattening phase impairs intramuscular fat deposition in beef cattle likely by changing the energy metabolism of skeletal muscle. The interaction of retinoic acid and heat shock 70-kDa protein may play a pivotal role in intramuscular fat deposition as a consequence of vitamin A supplementation by impairing de novo fatty acid synthesis as a result of a possible decrease in insulin sensitivity in the skeletal muscle. © 2020 Society of Chemical Industry.


Subject(s)
Cattle/metabolism , Meat/analysis , Muscle, Skeletal/chemistry , Vitamin A/metabolism , Animal Feed/analysis , Animals , Dietary Supplements/analysis , Energy Metabolism , Fatty Acids/analysis , Fatty Acids/biosynthesis , Lipogenesis , Muscle, Skeletal/metabolism , Proteomics , Vitamin A/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...