Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Chemosphere ; 364: 142995, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39097114

ABSTRACT

This paper describes an alternative method for the in situ synthesis of gold nanoparticles (AuNPs) with a particle size of less than 3 nm, using nanoreactors formed by reverse micelles of 1,4-bis-(2-ethylhexyl) sulfosuccinate sodium (AOT) and nanoparticle stabilization with l-cysteine, which favor the preparation of nanoparticles with size and shape control, which are homogeneously dispersed (1% by weight) on the support of titanium dioxide nanowires (TNWs). To study the activity and selectivity of the prepared catalyst (AuNPs@TNWs), an aqueous solution of 40 mM glycerol was irradiated with a green laser (λ = 530 nm, power = 100 mW) in the presence of the catalyst and O2 as an oxidant at 22 °C for 6 h, obtaining a glycerol conversion of 86% with a selectivity towards hydroxypyruvic acid (HA) of more than 90%. From the control and reactions, we concluded that the Ti-OH groups promote the glycerol adsorption on the nanowires surface and the surface plasmon of the gold nanoparticles favors the selectivity of the reaction towards the hydroxypyruvic acid.


Subject(s)
Glycerol , Gold , Metal Nanoparticles , Nanowires , Oxidation-Reduction , Titanium , Titanium/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Nanowires/chemistry , Glycerol/chemistry , Catalysis
2.
Nanomaterials (Basel) ; 14(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38869558

ABSTRACT

Photodynamic therapy (PDT) has developed as an efficient strategy for cancer treatment. PDT involves the production of reactive oxygen species (ROS) by light irradiation after activating a photosensitizer (PS) in the presence of O2. PS-coupled nanomaterials offer additional advantages, as they can merge the effects of PDT with conventional enabling-combined photo-chemotherapeutics effects. In this work, mesoporous titania nanorods were surface-immobilized with Chlorin e6 (Ce6) conjugated through 3-(aminopropyl)-trimethoxysilane as a coupling agent. The mesoporous nanorods act as nano vehicles for doxorubicin delivery, and the Ce6 provides a visible light-responsive production of ROS to induce PDT. The nanomaterials were characterized by XRD, DRS, FTIR, TGA, N2 adsorption-desorption isotherms at 77 K, and TEM. The obtained materials were tested for their singlet oxygen and hydroxyl radical generation capacity using fluorescence assays. In vitro cell viability experiments with HeLa cells showed that the prepared materials are not cytotoxic in the dark, and that they exhibit photodynamic activity when irradiated with LED light (150 W m-2). Drug-loading experiments with doxorubicin (DOX) as a model chemotherapeutic drug showed that the nanostructures efficiently encapsulated DOX. The DOX-nanomaterial formulations show chemo-cytotoxic effects on Hela cells. Combined photo-chemotoxicity experiments show enhanced effects on HeLa cell viability, indicating that the conjugated nanorods are promising for use in combined therapy driven by LED light irradiation.

3.
Molecules ; 28(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687197

ABSTRACT

The catalytic oxidation of phenethoxybenzene as a lignin model compound with a ß-O-4 bond was conducted using the Keggin-type polyoxometalate nanocatalyst (TBA)5[PMo10V2O40]. The optimization of the process's operational conditions was carried out using response surface methodology. The statistically significant variables in the process were determined using a fractional factorial design. Based on this selection, a central circumscribed composite experimental design was used to maximize the phenethoxybenzene conversion, varying temperature, reaction time, and catalyst load. The optimal conditions that maximized the phenethoxybenzene conversion were 137 °C, 3.5 h, and 200 mg of catalyst. In addition, under the optimized conditions, the Kraft lignin catalytic depolymerization was carried out to validate the effectiveness of the process. The depolymerization degree was assessed by gel permeation chromatography from which a significant decrease in the molar mass distribution Mw from 7.34 kDa to 1.97 kDa and a reduction in the polydispersity index PDI from 6 to 3 were observed. Furthermore, the successful cleavage of the ß-O-4 bond in the Kraft lignin was verified by gas chromatography-mass spectrometry analysis of the reaction products. These results offer a sustainable alternative to efficiently converting lignin into valuable products.

4.
Article in English | MEDLINE | ID: mdl-35294686

ABSTRACT

In the present work, halloysite nanotubes modified with gold nanoparticles (AuNPs-HNT) are successfully prepared by wet chemical method for the catalytic degradation of phenothiazine dyes (azure B (AZB) and toluidine blue O (TBO)) and also cleaner reduction of 4-(4-nitrophenyl)morpholine (4NM) in the sodium borohydride (NaBH4) media. The catalyst is formulated by modifying the HNT support with a 0.964% metal loading using the HNT supports modified with 3-aminopropyl-trimethoxysilane (APTMS) coupling agent to facilitate the anchoring sites to trap the AuNPs and to prevent their agglomeration/aggregation. The AuNPs-HNT catalyst is investigated for structural and morphological characterization to get insights about the formation of the catalyst for the effective catalytic reduction of dyes and 4NM. The microscopic studies demonstrate that AuNPs (2.75 nm) are decorated on the outer surface of HNT. The as-prepared AuNPs-HNT catalyst demonstrates AZB and TBO dye degradation efficiency up to 96% in 10 and 11 min, respectively, and catalytic reduction of 4NM to 4-morpholinoaniline (MAN) is achieved up to 97% in 11 min, in the presence of NaBH4 without the formation of any by-products. The pseudo-first-order rate constant (K1) value of the AuNPs-HNT catalyst for AZB, TBO, and 4NM were calculated to be 0.0078, 0.0055, and 0.0066 s-1, respectively. Moreover, the synthesized catalyst shows an excellent reusability with stable catalytic reduction for 7 successive cycles for both the dyes and 4NM. A plausible mechanism for the catalytic dye degradation and reduction of 4NM by AuNPs-HNT catalyst is proposed as well. The obtained results clearly indicate the potential of AuNPs-HNT as an efficient catalyst for the removal of dye contaminants from the aquatic environments and cleaner reduction of 4NM to MAN, insinuating future pharmaceutical applications.

5.
J Chem Inf Model ; 61(5): 2463-2474, 2021 05 24.
Article in English | MEDLINE | ID: mdl-33929203

ABSTRACT

E-selectin is a cell-adhesion receptor with specific recognition capacity toward sialo-fucosylated Lewis carbohydrates present in leukocytes and tumor cells. E-selectin interactions mediate the progress of inflammatory processes and tumor metastasis, which aroused the interest in using this protein as a biomolecular target to design glycomimetic inhibitors for active targeting or therapeutic purposes. In this work, we report the rational discovery of two novel glycomimetic peptides targeting E-selectin based on mutations of the reference selectin-binding peptide IELLQAR. Sixteen single or double mutants at Ile1, Leu3, Leu4, and Arg7 residues were evaluated as potential candidates for E-selectin targeting using 50 ns molecular dynamics (MD) simulations. Nine peptides showing a stable association with the functional pocket were modified by adding a cysteine residue to the N-terminus to confer versatility for further chemical conjugation. Subsequent 50 ns MD simulations resulted in five cysteine-modified peptides with retained or improved E-selectin binding potential. Then, 300 ns accelerated MD (aMD) simulations were used to examine the binding properties of the best five cysteine-modified peptides. CIEELQAR and CIELFQAR exhibit the most selective association with the functional pocket of E-selectin, as revealed by potential of mean force profiles. Microscale thermophoresis experiments confirmed the E-selectin binding capacity of the selected peptides with KD values in the low micromolar range (CIEELQAR KD = 35.0 ± 1.4 µM; CIELFQAR KD = 16.4 ± 0.7 µM), which are 25-fold lower than the reported value for the native ligand sLex (KD = 878 µM). Our findings support the potential of CIEELQAR and CIELFQAR as novel E-selectin-targeting peptides with high recognition capacity and versatility for chemical conjugation, which are critical for enabling future applications in active targeting.


Subject(s)
E-Selectin , Peptides , Cell Adhesion , Ligands , Sialyl Lewis X Antigen
6.
Materials (Basel) ; 13(4)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32093015

ABSTRACT

In this work, Au nanoparticles, supported in Al2O3 nanowires (ANW) modified with (3-aminopropyl)trimethoxysilane were synthetized, for their use as catalysts in the hydrogenation reaction of 4-(2-fluoro-4-nitrophenyl)-morpholine and 4-(4-nitrophenyl)morpholin-3-one. ANW was obtained by hydrothermal techniques and the metal was incorporated by the reduction of the precursor with NaBH4 posterior to superficial modification. The catalysts were prepared at different metal loadings and were characterized by different techniques. The characterization revealed structured materials in the form of nanowires and a successful superficial modification. All catalysts show that Au is in a reduced state and the shape of the nanoparticles is spherical, with high metal dispersion and size distributions from 3.7 to 4.6 nm. The different systems supported in modified-ANW were active and selective in the hydrogenation reaction of both substrates, finding for all catalytic systems a selectivity of almost 100% to the aromatic amine. Catalytic data showed pseudo first-order kinetics with respect to the substrate for all experimental conditions used in this work. The solvent plays an important role in the activity and selectivity of the catalyst, where the highest efficiency and operational stability was achieved when ethanol was used as the solvent.

7.
Materials (Basel) ; 13(1)2020 Jan 04.
Article in English | MEDLINE | ID: mdl-31947960

ABSTRACT

The effect of the ZrO2 loading was studied on spherical SiO2@ZrO2-CaO structures synthetized by a simple route that combines the Stöber and sol-gel methods. The texture of these materials was determined using SBET by N2 adsorption, where the increment in SiO2 spheres' surface areas was reached with the incorporation of ZrO2. Combined the characterization techniques of using different alcoholic dissolutions of zirconium (VI) butoxide 0.04 M, 0.06 M, and 0.08 M, we obtained SiO2@ZrO2 materials with 5.7, 20.2, and 25.2 wt % of Zr. Transmission electron microscopy (TEM) analysis also uncovered the shape and reproducibility of the SiO2 spheres. The presence of Zr and Ca in the core-shell was also determined by TEM. X-ray diffraction (XRD) profiles showed that the c-ZrO2 phase changed in to m-ZrO2 by incorporating calcium, which was confirmed by Raman spectroscopy. The purity of the SiO2 spheres, as well as the presence of Zr and Ca in the core-shell, was assessed by the Fourier transform infrared (FTIR) method. CO2 temperature programmed desorption (TPD-CO2) measurements confirmed the increment in the amount of the basic sites and strength of these basic sites due to calcium incorporation. The catalyst reuse in FAME production from canola oil transesterification allowed confirmation that these calcium core@shell catalysts turn out to be actives and stables for this reaction.

8.
Materials (Basel) ; 12(23)2019 Nov 24.
Article in English | MEDLINE | ID: mdl-31771284

ABSTRACT

The effect of a second porous SiO2 shell in the activity and selectivity of the Fe3O4@SiO2-Pt catalyst in the hydrodenitrogenation of indole is reported. The double Fe3O4@SiO2-Pt@SiO2 structure was prepared by coating Fe3O4 nanoparticles with tetraethyl orthosilicate (TEOS) with a further impregnation of 1.0 wt.% of Pt on the (3-aminopropyl)triethoxysilane functionalized Fe3O4@SiO2 structures. The second porous SiO2 shell, obtained by using a hexadecyltrimethylammonium bromide (CTAB) template, covered the Fe3O4@SiO2-Pt catalyst with a well-defined and narrow pore-sized distribution. The full characterization by TEM, inductively coupled plasma-optical emission spectroscopy (ICP-OES), XRD, and N2 adsorption isotherm at 77 K and vibrating sample magnetometry (VSM) of the catalysts indicates homogeneous core@shell structures with a controlled nano-size of metallic Pt. A significant effect of the double SiO2 shell in the catalytic performance was demonstrated by both a higher activity to eliminate the nitrogen atom of the indole molecule present in model liquid fuel and the improvement of the catalytic stability reaching four consecutive reaction cycles with only a slight conversion level decrease.

9.
Materials (Basel) ; 12(16)2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31426313

ABSTRACT

Palladium N,N'-bis(3-allylsalicylidene)o-phenylenediamine complex (PdAS) immobilized onto mesoporous polymeric methyl acrylate (MA) based resins (PdAS(x)-MA, x = 1, 2, 5, or 10 wt.%) were successfully prepared as heterogeneous catalysts for the Heck reaction. The catalysts were synthesized via radical suspension polymerization using PdAS as a metal chelate monomer, divinylbenzene and MA as co-monomers. The effect of the PdAS(x) content on the physicochemical properties of the resins is also reported. The catalysts were characterized by using a range of analytical techniques. The large surface area (>580 m2·g-1) and thermal stability (up to 250 °C) of the PdAS(x)-MA materials allows their application as catalysts in the C-C coupling reaction between iodobenzene and MA in the presence of trimethylamine at 120 °C using DMF as the solvent. The PdAS(10)-MA catalyst exhibited the highest catalytic performance with no significant catalytic loss being observed after five reuses, thereby indicating excellent catalyst stability in the reaction medium.

10.
Materials (Basel) ; 12(3)2019 Jan 29.
Article in English | MEDLINE | ID: mdl-30699995

ABSTRACT

The type of metal oxide affects the activity and selectivity of Fe2O3⁻SiO2⁻MeO2⁻Pt (Me = Ti, Sn, Ce) catalysts on the hydrogenation of cinnamaldehyde. The double shell structure design is thought to protect the magnetic Fe2O3 cores, and also act as a platform for depositing a second shell of TiO2, SnO2 or CeO2 metal oxide. To obtain a homogeneous metallic dispersion, the incorporation of 5 wt % of Pt was carried out over Fe2O3⁻SiO2⁻MeO2 (Me = Ti, Sn, Ce) structures modified with (3-aminopropyl)triethoxysilane by successive impregnation-reduction cycles. The full characterization by HR-TEM, STEM-EDX, XRD, N2 adsorption isotherm at -196 °C, TPR-H2 and VSM of the catalysts indicates that homogeneous core-shell structures with controlled nano-sized magnetic cores, multi-shells and metallic Pt were obtained. The nature of the metal oxide affects the Pt nanoparticle sizes where the mean Pt diameter is in the order: ⁻TiO2⁻Pt > ⁻SnO2⁻Pt > ⁻CeO2⁻Pt. Among the catalysts studied, ⁻CeO2⁻Pt had the best catalytic performance, reaching the maximum of conversion at 240 min. of reaction without producing hydrocinnamaldehyde (HCAL). It also showed a plot volcano type for the production of cinnamic alcohol (COL), with 3-phenyl-1-propanol (HCOL) as a main product. The ⁻SnO2⁻Pt catalyst showed a poor catalytic performance attributable to the Pt clusters' occlusion in the irregular surface of the ⁻SnO2. Finally, the ⁻TiO2⁻Pt catalyst showed a continuous production of COL with a 100% conversion and 65% selectivity at 600 min of reaction.

11.
Mater Sci Eng C Mater Biol Appl ; 65: 164-71, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27157739

ABSTRACT

PAMAM-grafted TiO2 nanotubes (PAMAM-TiO2NT) have been synthesized and evaluated as new drug nanocarriers, using curcumin (CUR), methotrexate (MTX), and silibinin (SIL) as model therapeutic compounds. TiO2NT were surface-modified using a silane coupling agent and subsequently conjugated with PAMAM dendrimer of the third generation. The characterization of PAMAM-TiO2NT nanomaterials was performed by FTIR, TEM, N2 adsorption-desorption isotherms, XRD, and TGA techniques, which accounted for a 2.6wt.% of PAMAM grafting in the prepared materials. The drug loading capacity, drug release properties, and cytotoxicity of PAMAM-TiO2NT showed a significant improvement compared to pristine TiO2NT, thus revealing the promising properties of these new materials for drug delivery purposes.


Subject(s)
Dendrimers/chemistry , Drug Carriers/chemistry , Nanotubes/chemistry , Pharmaceutical Preparations/chemistry , Titanium/chemistry , Cell Survival/drug effects , Curcumin/chemistry , Curcumin/metabolism , Curcumin/toxicity , Drug Liberation , HeLa Cells , Humans , Methotrexate/chemistry , Methotrexate/metabolism , Methotrexate/toxicity , Microscopy, Electron, Transmission , Pharmaceutical Preparations/metabolism , Silybin , Silymarin/chemistry , Silymarin/metabolism , Silymarin/toxicity , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL