ABSTRACT
Annona emarginata is a native Brazilian species capable of producing at least ten alkaloids of ecological, agronomic, and pharmacological importance. Some studies have explored the effect of external phytoregulators on the production of alkaloids, including the effect of auxins, which, like alkaloids, derive from the shikimic acid pathway. Thus, this study aimed to evaluate how indole acetic acid (IAA) and its inhibitor 2,3,5-triiodobenzoic acid (TIBA) impact the production of alkaloids and the primary metabolism of A. emarginata, which brings advances in the understanding of the mechanisms of alkaloid synthesis and can aid in the bioprospection of molecules of interest in Annonaceae. The design was completely randomized, with three treatments (control, IAA [10-6 M] and TIBA [10-6 M]) and five collection times (12, 36, 84, 156, and 324 h). The following variables were analyzed: total alkaloids, alkaloid profile, nitrate reductase activity, gas exchange in photosynthesis, chlorophyll a fluorescence, sugars, starch, and antioxidant activity. Of the twelve alkaloids analyzed, discretine and xylopine were not detected in the control plants; however, both were detected when IAA was applied (in roots and leaves) and xylopine (in roots) when the inhibitor was applied. The alkaloid asimilobine was not detected with the use of TIBA. Variations in alkaloid concentrations occurred in a punctual manner, without significant variations in photosynthesis and nitrate reductase activity, but with variations in the antioxidant system and sugar concentrations, mainly at 156 h, when the highest alkaloid concentrations were observed with the use of TIBA. It could be concluded that IAA is capable of selectively modulating the production of alkaloids in A. emarginata, either due to an external source or by the application of its inhibitor (TIBA).
ABSTRACT
The current climate change setting necessitates the development of methods to mitigate the effects of water scarcity to ensure the sustainability of agricultural activities.f Hydrogen peroxide (H2O2) is a plant signaling molecule that can trigger metabolic defense mechanisms in response to adverse environmental circumstances like as drought. The purpose of this study was to investigate if foliar application of H2O2 stimulates modifications in photosynthetic metabolism for adaptation of tomato plants to a period of water deficit and recovery. The study, which was carried out in a factorial scheme, tested plants subjected to two water conditions (well-watered plants and plants subjected to water deficit), as well as foliar application of 1 mM H2O2 (zero, one, or two applications, 24 h after the first), and was evaluated in two moments, during the deficit period and after recovery. Foliar application of 1 mM H2O2 resulted in a 69% increase in the maximum rate of RuBisCO carboxylation in well-watered plants, contributing to tomato photosynthetic adjustment. H2O2 treatment resulted in a 37% increase in dry mass in these plants. In plants subjected to water deficiency, 2× H2O2 increased stress tolerance by reducing the maximal rate of RuBisCO carboxylation by only 18%, but in plants that did not receive H2O2 treatment, the reduction was 86% in comparison to the wet plants. Plants exposed to a water shortage and given 2× H2O2 stored sucrose in the leaves and had a 17% higher relative water content than plants not given H2O2. Thus, H2O2 foliar treatment can be used in tomato management to induce drought tolerance or to boost photosynthetic activity and dry mass formation in well-watered plants.
Subject(s)
Solanum lycopersicum , Water , Water/metabolism , Hydrogen Peroxide/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Plant Leaves/metabolism , AcclimatizationABSTRACT
A momentary increase in cytoplasmic Ca2+ generates an oscillation responsible for the activation of proteins, such as calmodulin and kinases, which interact with reactive oxygen species (ROS) for the transmission of a stress signal. This study investigated the influence of variations in calcium concentrations on plant defense signaling and photosynthetic acclimatization after mechanical damage. Solanum lycopersicum Micro-Tom was grown with 0, 2 and 4 mM Ca2+, with and without mechanical damage. The expression of stress genes was evaluated, along with levels of antioxidant enzymes, hydrogen peroxide, lipid peroxidation, histochemistry, photosynthesis and dry mass of organs. The ROS production generated by mechanical damage was further enhanced by calcium-free conditions due to the inactivation of the oxygen evolution complex, contributing to an increase in reactive species. The results indicated that ROS affected mechanical damage signaling because calcium-free plants exhibited high levels of H2O2 and enhanced expression of kinase and RBOH1 genes, necessary conditions for an efficient response to stress. We conclude that the plants without calcium supply recognized mechanical damage but did not survive. The highest expression of the RBOH1 gene and the accumulation of H2O2 in these plants signaled cell death. Plants grown in the presence of calcium showed higher expression of SlCaM2 and control of H2O2 concentration, thus overcoming the stress caused by mechanical damage, with photosynthetic acclimatization and without damage to dry mass production.
Subject(s)
Solanum lycopersicum , Solanum lycopersicum/metabolism , Hydrogen Peroxide/metabolism , Reactive Oxygen Species/metabolism , Calcium Signaling , Photosynthesis/genetics , Acclimatization , Antioxidants/metabolism , Gene Expression , Plant Leaves/metabolismABSTRACT
Mitochondrial uncoupling proteins (UCPs) are specialized proteins capable of dissipating the proton electrochemical gradient generated in respiration independent of ATP synthesis. Three UCP coding genes with distinct expression patterns have been identified in Arabidopsis thaliana (namely UCP1, UCP2 and UCP3). Here, we generated T-DNA double-insertion mutants (ucp1 ucp2, ucp1 ucp3 and ucp2 ucp3) to investigate the functionality of the Arabidopsis UCP isoforms. A strong compensatory effect of the wild-type UCP gene was found in the double-knockdown lines. Higher levels of reactive oxygen species (ROS) were observed in vegetative and reproductive organs of double mutant plants. This exacerbated oxidative stress in plants also increased lipid peroxidation but was not compensated by the activation of the antioxidant system. Alterations in O2 consumption and ADP/ATP ratio were also observed, suggesting a change in mitochondrial energy-generating processes. Deficiencies in double-mutants were not limited to mitochondria and also changed photosynthetic efficiency and redox state. Our results indicate that UCP2 and UCP3 have complementary function with UCP1 in plant reproductive and vegetative organ/tissues, as well as in stress adaptation. The partial redundancy between the UCP isoforms suggests that they could act separately or jointly on mitochondrial homeostasis during A. thaliana development.
Subject(s)
Arabidopsis , Adenosine Triphosphate , Arabidopsis/genetics , Arabidopsis/metabolism , Ion Channels/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Protein Isoforms/metabolism , Uncoupling Protein 1ABSTRACT
Passiflora incarnata L. is a species of global pharmacological importance, has not been fully studied in the context of cultivation and management. It is known that silicon acts on abiotic stress and promotes phenols synthesis. The practice of mechanical damage is widely used in P. incarnata crops, and its interaction with silicon can have a significant influence on plant metabolism. Therefore, our objective was to investigate the effects of silicon and mechanical damage on photosynthesis, polyphenols and vitexin of P. incarnata. The experiment was conducted in a factorial design with SiO2 concentrations (0, 1, 2, 3 mM) and presence or absence of mechanical damage. It was found that mechanical damage improved photosynthetic performance at lower concentrations or absence of silicon. Moreover, this condition promoted an increasing in vitexin concentration when SiO2 was not provided. The application of 3 mM Si is recommended to increase polyphenols and vitexin, without harming dry mass of aerial part. The interaction between silicon and mechanical damage could be a tool to increase agronomic yield and commercial value of the P. incarnata crop.
Subject(s)
Apigenin/metabolism , Passiflora/metabolism , Polyphenols/metabolism , Silicon Dioxide/metabolism , Apigenin/analysis , Passiflora/chemistry , Passiflora/growth & development , Polyphenols/analysis , Silicon/metabolism , Stress, MechanicalABSTRACT
The concentration of nitrogen can generate different strategies in plants in response to stress. In this study, we investigated how nitrogen concentration interferes with the defense system of Annona emarginata. Low concentrations of nitrogen increased the allocation of photosynthetic resources to carbon metabolism, resulting in an increase in the synthesis of volatile substances involved in signaling and defense that contributed to antioxidant enzymes in overcoming stress. The availability of nitrogen at 5.62 mM concentration might have helped to induce increased resistance in the plants because at this concentration, signaling substances and defense substances (monoterpenes and sesquiterpenes) were observed. Plants cultivated with the highest nitrate concentration displaced energy for the reduction of this ion, likely forming nitric oxide, a signaling molecule. This condition, together with the decrease in carbon skeletons, may have contributed to the lower synthesis of volatile substances of the specialized metabolism that are also involved with signaling. Varying the nitrogen in Annona emarginata cultivation revealed that depending on the concentration, volatile substances show higher or lower synthesis and participation in the system of signaling and defense in the plant. These results may suggest that volatile substances participate in resistance to pests and diseases, which is a necessary condition for Annona emarginata to be preferentially used as rootstock for Annona x atemoya.