Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Heart Rhythm ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38670247

ABSTRACT

BACKGROUND: Implantable cardiac defibrillator (ICD) implantation can protect against sudden cardiac death after myocardial infarction. However, improved risk stratification for device requirement is still needed. OBJECTIVE: The purpose of this study was to improve assessment of postinfarct ventricular electropathology and prediction of appropriate ICD therapy by combining late gadolinium enhancement (LGE) and advanced computational modeling. METHODS: ADAS 3D LV (ADAS LV Medical, Barcelona, Spain) and custom-made software were used to generate 3-dimensional patient-specific ventricular models in a prospective cohort of patients with a myocardial infarction (N = 40) having undergone LGE imaging before ICD implantation. Corridor metrics and 3-dimensional surface features were computed from LGE images. The Virtual Induction and Treatment of Arrhythmias (VITA) framework was applied to patient-specific models to comprehensively probe the vulnerability of the scar substrate to sustaining reentrant circuits. Imaging and VITA metrics, related to the numbers of induced ventricular tachycardias and their corresponding round trip times (RTTs), were compared with ICD therapy during follow-up. RESULTS: Patients with an event (n = 17) had a larger interface between healthy myocardium and scar and higher VITA metrics. Cox regression analysis demonstrated a significant independent association with an event: interface (hazard ratio [HR] 2.79; 95% confidence interval [CI] 1.44-5.44; P < .01), unique ventricular tachycardias (HR 1.67; 95% CI 1.04-2.68; P = .03), mean RTT (HR 2.14; 95% CI 1.11-4.12; P = .02), and maximum RTT (HR 2.13; 95% CI 1.19-3.81; P = .01). CONCLUSION: A detailed quantitative analysis of LGE-based scar maps, combined with advanced computational modeling, can accurately predict ICD therapy and could facilitate the early identification of high-risk patients in addition to left ventricular ejection fraction.

2.
Europace ; 25(9)2023 08 02.
Article in English | MEDLINE | ID: mdl-37421339

ABSTRACT

AIMS: Substrate assessment of scar-mediated ventricular tachycardia (VT) is frequently performed using late gadolinium enhancement (LGE) images. Although this provides structural information about critical pathways through the scar, assessing the vulnerability of these pathways for sustaining VT is not possible with imaging alone.This study evaluated the performance of a novel automated re-entrant pathway finding algorithm to non-invasively predict VT circuit and inducibility. METHODS: Twenty post-infarct VT-ablation patients were included for retrospective analysis. Commercially available software (ADAS3D left ventricular) was used to generate scar maps from 2D-LGE images using the default 40-60 pixel-signal-intensity (PSI) threshold. In addition, algorithm sensitivity for altered thresholds was explored using PSI 45-55, 35-65, and 30-70. Simulations were performed on the Virtual Induction and Treatment of Arrhythmias (VITA) framework to identify potential sites of block and assess their vulnerability depending on the automatically computed round-trip-time (RTT). Metrics, indicative of substrate complexity, were correlated with VT-recurrence during follow-up. RESULTS: Total VTs (85 ± 43 vs. 42 ± 27) and unique VTs (9 ± 4 vs. 5 ± 4) were significantly higher in patients with- compared to patients without recurrence, and were predictive of recurrence with area under the curve of 0.820 and 0.770, respectively. VITA was robust to scar threshold variations with no significant impact on total and unique VTs, and mean RTT between the four models. Simulation metrics derived from PSI 45-55 model had the highest number of parameters predictive for post-ablation VT-recurrence. CONCLUSION: Advanced computational metrics can non-invasively and robustly assess VT substrate complexity, which may aid personalized clinical planning and decision-making in the treatment of post-infarction VT.


Subject(s)
Cicatrix , Computer Simulation , Tachycardia, Ventricular , Humans , Algorithms , Catheter Ablation , Cicatrix/complications , Myocardial Infarction/complications , Retrospective Studies , Tachycardia, Ventricular/etiology , Tachycardia, Ventricular/surgery , Reproducibility of Results , Male , Middle Aged , Aged , Aged, 80 and over
4.
Med Image Anal ; 80: 102483, 2022 08.
Article in English | MEDLINE | ID: mdl-35667328

ABSTRACT

Catheter ablation is currently the only curative treatment for scar-related ventricular tachycardias (VTs). However, not only are ablation procedures long, with relatively high risk, but success rates are punitively low, with frequent VT recurrence. Personalized in-silico approaches have the opportunity to address these limitations. However, state-of-the-art reaction diffusion (R-D) simulations of VT induction and subsequent circuits used for in-silico ablation target identification require long execution times, along with vast computational resources, which are incompatible with the clinical workflow. Here, we present the Virtual Induction and Treatment of Arrhythmias (VITA), a novel, rapid and fully automated computational approach that uses reaction-Eikonal methodology to induce VT and identify subsequent ablation targets. The rationale for VITA is based on finding isosurfaces associated with an activation wavefront that splits in the ventricles due to the presence of an isolated isthmus of conduction within the scar; once identified, each isthmus may be assessed for their vulnerability to sustain a reentrant circuit, and the corresponding exit site automatically identified for potential ablation targeting. VITA was tested on a virtual cohort of 7 post-infarcted porcine hearts and the results compared to R-D simulations. Using only a standard desktop machine, VITA could detect all scar-related VTs, simulating activation time maps and ECGs (for clinical comparison) as well as computing ablation targets in 48 minutes. The comparable VTs probed by the R-D simulations took 68.5 hours on 256 cores of high-performance computing infrastructure. The set of lesions computed by VITA was shown to render the ventricular model VT-free. VITA could be used in near real-time as a complementary modality aiding in clinical decision-making in the treatment of post-infarction VTs.


Subject(s)
Catheter Ablation , Myocardial Infarction , Tachycardia, Ventricular , Animals , Arrhythmias, Cardiac/surgery , Cicatrix , Electrocardiography , Humans , Swine , Tachycardia, Ventricular/diagnostic imaging , Tachycardia, Ventricular/surgery
5.
Heart Rhythm ; 19(10): 1604-1610, 2022 10.
Article in English | MEDLINE | ID: mdl-35644355

ABSTRACT

BACKGROUND: Thresholding-based analysis of late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) can create scar maps and identify corridors that might provide a reentrant substrate for ventricular tachycardia (VT). Current recommendations use a full-width-at-half-maximum approach, effectively classifying areas with a pixel signal intensity (PSI) >40% as border zone (BZ) and >60% as core. OBJECTIVE: The purpose of this study was to investigate the impact of 4 different threshold settings on scar and corridor quantification and to correlate this with postablation VT recurrence. METHODS: Twenty-seven patients with ischemic cardiomyopathy who had undergone catheter ablation for VT were included for retrospective analysis. LGE-CMR images were analyzed using ADAS3D LV. Scar maps were created for 4 PSI thresholds (40-60, 35-65, 30-70, and 45-55), and the extent of variation in BZ and core, as well as the number and weight of conduction corridors, were quantified. Three-dimensional representations were reconstructed from exported segmentations and used to quantify the surface area between healthy myocardium and scar (BZ + core), and between BZ and core. RESULTS: A wider PSI threshold was associated with an increase in BZ mass and decrease in scar (P <.001). No significant differences were observed for the total number of corridors and their mass with increasing PSI threshold. The best correlation in predicting arrhythmia recurrence was observed for PSI 45-55 (area under the curve 0.807; P = .001). CONCLUSION: Varying PSI has a significant impact on quantification of LGE-CMR parameters and may have incremental clinical value in predicting arrhythmia recurrence. Further prospective investigation is warranted to clarify the functional implications of these findings for LGE-CMR-guided ventricular ablation.


Subject(s)
Catheter Ablation , Tachycardia, Ventricular , Catheter Ablation/methods , Cicatrix/diagnosis , Cicatrix/etiology , Cicatrix/pathology , Contrast Media/pharmacology , Gadolinium/pharmacology , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Retrospective Studies , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/pathology , Tachycardia, Ventricular/surgery
6.
Comput Biol Med ; 141: 105061, 2022 02.
Article in English | MEDLINE | ID: mdl-34915331

ABSTRACT

BACKGROUND: Computational models of the heart built from cardiac MRI and electrophysiology (EP) data have shown promise for predicting the risk of and ablation targets for myocardial infarction (MI) related ventricular tachycardia (VT), as well as to predict paced activation sequences in heart failure patients. However, most recent studies have relied on low resolution imaging data and little or no EP personalisation, which may affect the accuracy of model-based predictions. OBJECTIVE: To investigate the impact of model anatomy, MI scar morphology, and EP personalisation strategies on paced activation sequences and VT inducibility to determine the level of detail required to make accurate model-based predictions. METHODS: Imaging and EP data were acquired from a cohort of six pigs with experimentally induced MI. Computational models of ventricular anatomy, incorporating MI scar, were constructed including bi-ventricular or left ventricular (LV) only anatomy, and MI scar morphology with varying detail. Tissue conductivities and action potential duration (APD) were fitted to 12-lead ECG data using the QRS duration and the QT interval, respectively, in addition to corresponding literature parameters. Paced activation sequences and VT induction were simulated. Simulated paced activation and VT inducibility were compared between models and against experimental data. RESULTS: Simulations predict that the level of model anatomical detail has little effect on simulated paced activation, with all model predictions comparing closely with invasive EP measurements. However, detailed scar morphology from high-resolution images, bi-ventricular anatomy, and personalized tissue conductivities are required to predict experimental VT outcome. CONCLUSION: This study provides clear guidance for model generation based on clinical data. While a representing high level of anatomical and scar detail will require high-resolution image acquisition, EP personalisation based on 12-lead ECG can be readily incorporated into modelling pipelines, as such data is widely available.


Subject(s)
Myocardial Infarction , Tachycardia, Ventricular , Animals , Electrocardiography , Heart , Heart Ventricles/diagnostic imaging , Humans , Myocardial Infarction/diagnostic imaging , Swine , Tachycardia, Ventricular/diagnostic imaging
7.
Comput Biol Med ; 130: 104214, 2021 03.
Article in English | MEDLINE | ID: mdl-33476992

ABSTRACT

BACKGROUND: Identification of targets for ablation of post-infarction ventricular tachycardias (VTs) remains challenging, often requiring arrhythmia induction to delineate the reentrant circuit. This carries a risk for the patient and may not be feasible. Substrate mapping has emerged as a safer strategy to uncover arrhythmogenic regions. However, VT recurrence remains common. GOAL: To use computer simulations to assess the ability of different substrate mapping approaches to identify VT exit sites. METHODS: A 3D computational model of the porcine post-infarction heart was constructed to simulate VT and paced rhythm. Electroanatomical maps were constructed based on endocardial electrogram features and the reentry vulnerability index (RVI - a metric combining activation (AT) and repolarization timings to identify tissue susceptibility to reentry). Since scar transmurality in our model was not homogeneous, parameters derived from all signals (including dense scar regions) were used in the analysis. Potential ablation targets obtained from each electroanatomical map during pacing were compared to the exit site detected during VT mapping. RESULTS: Simulation data showed that voltage cut-offs applied to bipolar electrograms could delineate the scar, but not the VT circuit. Electrogram fractionation had the highest correlation with scar transmurality. The RVI identified regions closest to VT exit site but was outperformed by AT gradients combined with voltage cut-offs. The performance of all metrics was affected by pacing location. CONCLUSIONS: Substrate mapping could provide information about the infarct, but the directional dependency on activation should be considered. Activation-repolarization metrics have utility in safely identifying VT targets, even with non-transmural scars.


Subject(s)
Catheter Ablation , Tachycardia, Ventricular , Animals , Cicatrix , Computer Simulation , Humans , Swine , Tachycardia, Ventricular/surgery
8.
Pacing Clin Electrophysiol ; 43(7): 737-745, 2020 07.
Article in English | MEDLINE | ID: mdl-32469085

ABSTRACT

BACKGROUND: Antitachycardia pacing (ATP), which may avoid unnecessary implantable cardioverter-defibrillator (ICD) shocks, does not always terminate ventricular arrhythmias (VAs). Mean entropy calculated using cardiac magnetic resonance texture analysis (CMR-TA) has been shown to predict appropriate ICD therapy. We examined whether scar heterogeneity, quantified by mean entropy, is associated with ATP failure and explore potential mechanisms using computer modeling. METHODS: A subanalysis of 114 patients undergoing CMR-TA where the primary endpoint was delivery of appropriate ICD therapy (ATP or shock therapy) was performed. Patients receiving appropriate ICD therapy (n = 33) were dichotomized into "successful ATP" versus "shock therapy" groups. In silico computer modeling was used to explore underlying mechanisms. RESULTS: A total of 16 of 33 (48.5%) patients had successful ATP to terminate VA, and 17 of 33 (51.5%) patients required shock therapy. Mean entropy was significantly higher in the shock versus successful ATP group (6.1 ± 0.5 vs 5.5 ± 0.7, P = .037). Analysis of patients receiving ATP (n = 22) showed significantly higher mean entropy in the six of 22 patients that failed ATP (followed by rescue ICD shock) compared to 16 of 22 that had successful ATP (6.3 ± 0.7 vs 5.5 ± 0.7, P = .048). Computer modeling suggested inability of the paced wavefront in ATP to successfully propagate from the electrode site through patchy fibrosis as a possible mechanism of failed ATP. CONCLUSIONS: Our findings suggest lower scar heterogeneity (mean entropy) is associated with successful ATP, whereas higher scar heterogeneity is associated with more aggressive VAs unresponsive to ATP requiring shock therapy that may be due to inability of the paced wavefront to propagate through scar and terminate the VA circuit.


Subject(s)
Cicatrix/physiopathology , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Tachycardia, Ventricular/diagnostic imaging , Tachycardia, Ventricular/therapy , Computer Simulation , Defibrillators, Implantable , Entropy , Female , Humans , Male , Middle Aged , Tachycardia, Ventricular/physiopathology , Treatment Failure
9.
Heart Rhythm ; 17(4): 576-583, 2020 04.
Article in English | MEDLINE | ID: mdl-31751771

ABSTRACT

BACKGROUND: Identifying arrhythmogenic sites to improve ventricular tachycardia (VT) ablation outcomes remains unresolved. The reentry vulnerability index (RVI) combines activation and repolarization timings to identify sites critical for reentrant arrhythmia initiation without inducing VT. OBJECTIVE: The purpose of this study was to provide the first assessment of RVI's capability to identify VT sites of origin using high-density contact mapping and comparison with other activation-repolarization markers of functional substrate. METHODS: Eighteen VT ablation patients (16 male; 72% ischemic) were studied. Unipolar electrograms were recorded during ventricular pacing and analyzed offline. Activation time (AT), activation-recovery interval (ARI), and repolarization time (RT) were measured. Vulnerability to reentry was mapped based on RVI and spatial distribution of AT, ARI, and RT. The distance from sites identified as vulnerable to reentry to the VT site of origin was measured, with distances <10 mm and >20 mm indicating accurate and inaccurate localization, respectively. RESULTS: The origins of 18 VTs (6 entrainment, 12 pace-mapping) were identified. RVI maps included 1012 (408-2098) (median, 1st-3rd quartiles) points per patient. RVI accurately localized 72.2% VT sites of origin, with median distance of 5.1 (3.2-10.1) mm. Inaccurate localization was significantly less frequent for RVI than AT (5.6% vs 33.3%; odds ratio 0.12; P = .035). Compared to RVI, distance to VT sites of origin was significantly larger for sites showing prolonged RT and ARI and were nonsignificantly larger for sites showing highest AT and ARI gradients. CONCLUSION: RVI identifies vulnerable regions closest to VT sites of origin. Activation-repolarization metrics may improve VT substrate delineation and inform novel ablation strategies.


Subject(s)
Body Surface Potential Mapping/methods , Heart Conduction System/physiopathology , Heart Rate/physiology , Heart Ventricles/physiopathology , Tachycardia, Ventricular/physiopathology , Adult , Aged , Catheter Ablation/methods , Female , Heart Ventricles/diagnostic imaging , Humans , Male , Middle Aged , Predictive Value of Tests , Tachycardia, Ventricular/surgery
10.
Biophys J ; 117(12): 2361-2374, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31521328

ABSTRACT

The development of effective and safe therapies for scar-related ventricular tachycardias requires a detailed understanding of the mechanisms underlying the conduction block that initiates electrical re-entries associated with these arrhythmias. Conduction block has been often associated with electrophysiological changes that prolong action potential duration (APD) within the border zone (BZ) of chronically infarcted hearts. However, experimental evidence suggests that remodeling processes promoting conduction slowing as opposed to APD prolongation mark the chronic phase. In this context, the substrate for the initial block at the mouth of an isthmus/diastolic channel leading to ventricular tachycardia is unclear. The goal of this study was to determine whether electrophysiological parameters associated with conduction slowing can cause block and re-entry in the BZ. In silico experiments were conducted on two-dimensional idealized infarct tissue as well as on a cohort of postinfarction porcine left ventricular models constructed from ex vivo magnetic resonance imaging scans. Functional conduction slowing in the BZ was modeled by reducing sodium current density, whereas structural conduction slowing was represented by decreasing tissue conductivity and including fibrosis. The arrhythmogenic potential of APD prolongation was also tested as a basis for comparison. Within all models, the combination of reduced sodium current with structural remodeling more often degenerated into re-entry and, if so, was more likely to be sustained for more cycles. Although re-entries were also detected in experiments with prolonged APD, they were often not sustained because of the subsequent block caused by long-lasting repolarization. Functional and structural conditions associated with slow conduction rather than APD prolongation form a potent substrate for arrhythmogenesis at the isthmus/BZ of chronically infarcted hearts. Reduced excitability led to block while slow conduction shortened the wavelength of propagation, facilitating the sustenance of re-entries. These findings provide important insights for models of patient-specific risk stratification and therapy planning.


Subject(s)
Heart Conduction System/physiopathology , Models, Cardiovascular , Myocardial Infarction/physiopathology , Action Potentials , Animals , Fibrosis , Kinetics , Magnetic Resonance Imaging , Myocardial Infarction/complications , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Swine , Tachycardia, Ventricular/complications
11.
Comput Biol Med ; 108: 263-275, 2019 05.
Article in English | MEDLINE | ID: mdl-31009930

ABSTRACT

Identification of targets for catheter ablation of ventricular tachycardias (VTs) remains a significant challenge. VTs are often driven by re-entrant circuits resulting from a complex interaction between the front (activation) and tail (repolarization) of the electrical wavefront. Most mapping techniques do not take into account the tissue repolarization which may hinder the detection of ablation targets. The re-entry vulnerability index (RVI), a recently proposed mapping procedure, incorporates both activation and repolarization times to uncover VT circuits. The method showed potential in a series of experiments, but it still requires further development to enable its incorporation into a clinical protocol. Here, in-silico experiments were conducted to thoroughly assess RVI maps constructed under clinically-relevant mapping conditions. Within idealized as well as anatomically realistic infarct models, we show that parameters of the algorithm such as the search radius can significantly alter the specificity and sensitivity of the RVI maps. When constructed on sparse grids obtained following various placements of clinical recording catheters, RVI maps can identify vulnerable regions as long as two electrodes were placed on both sides of the line of block. Moreover, maps computed during pacing without inducing VT can reveal areas of abnormal repolarization and slow conduction but not directly vulnerability. In conclusion, the RVI algorithm can detect re-entrant circuits during VT from low resolution mapping grids resembling the clinical setting. Furthermore, RVI maps may provide information about the underlying tissue electrophysiology to guide catheter ablation without the need of inducing potentially harmful VT during the clinical procedure. Finally, the ability of the RVI maps to identify vulnerable regions with specificity in high resolution computer models could potentially improve the prediction of optimal ablation targets of simulation-based strategies.


Subject(s)
Algorithms , Catheter Ablation , Computer Simulation , Models, Cardiovascular , Tachycardia, Ventricular , Animals , Humans , Rabbits , Tachycardia, Ventricular/physiopathology , Tachycardia, Ventricular/surgery
12.
Biophys J ; 115(12): 2486-2498, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30503533

ABSTRACT

BACKGROUND: Understanding the biophysical processes by which electrical stimuli applied to cardiac tissue may result in local activation is important in both the experimental and clinical electrophysiology laboratory environments, as well as for gaining a more in-depth knowledge of the mechanisms of focal-trigger-induced arrhythmias. Previous computational models have predicted that local myocardial tissue architecture alone may significantly modulate tissue excitability, affecting both the local stimulus current required to excite the tissue and the local effective refractory period (ERP). In this work, we present experimental validation of this structural modulation of local tissue excitability on the endocardial tissue surface, use computational models to provide mechanistic understanding of this phenomena in relation to localized changes in electrotonic loading, and demonstrate its implications for the capture of afterdepolarizations. METHODS AND RESULTS: Experiments on rabbit ventricular wedge preparations showed that endocardial ridges (surfaces of negative mean curvature) had a stimulus capture threshold that was 0.21 ± 0.03 V less than endocardial grooves (surfaces of positive mean curvature) for pairwise comparison (24% reduction, corresponding to 56.2 ± 6.4% of the energy). When stimulated at the minimal stimulus strength for capture, ridge locations showed a shorter ERP than grooves (n = 6, mean pairwise difference 7.4 ± 4.2 ms). When each site was stimulated with identical-strength stimuli, the difference in ERP was further increased (mean pairwise difference 15.8 ± 5.3 ms). Computational bidomain models of highly idealized cylindrical endocardial structures qualitatively agreed with these findings, showing that such changes in excitability are driven by structural modulation in electrotonic loading, quantifying this relationship as a function of surface curvature. Simulations further showed that capture of delayed afterdepolarizations was more likely in trabecular ridges than grooves, driven by this difference in loading. CONCLUSIONS: We have demonstrated experimentally and explained mechanistically in computer simulations that the ability to capture tissue on the endocardial surface depends upon the local tissue architecture. These findings have important implications for deepening our understanding of excitability differences related to anatomical structure during stimulus application that may have important applications in the translation of novel experimental optogenetics pacing strategies. The uncovered preferential vulnerability to capture of afterdepolarizations of endocardial ridges, compared to grooves, provides important insight for understanding the mechanisms of focal-trigger-induced arrhythmias.


Subject(s)
Endocardium/cytology , Endocardium/physiology , Heart Ventricles/cytology , Models, Cardiovascular , Refractory Period, Electrophysiological
13.
Chaos ; 27(9): 093910, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28964108

ABSTRACT

Premature ventricular complexes (PVCs), the first initiating beats of a variety of cardiac arrhythmias, have been associated with spontaneous calcium release (SCR) events at the cell level. However, the mechanisms underlying the degeneration of such PVCs into arrhythmias are not fully understood. The objective of this study was to investigate the conditions under which SCR-mediated PVCs can lead to ventricular arrhythmias. In particular, we sought to determine whether sodium (Na+) current loss-of-function in the structurally normal ventricles provides a substrate for unidirectional conduction block and reentry initiated by SCR-mediated PVCs. To achieve this goal, a stochastic model of SCR was incorporated into an anatomically accurate compute model of the rabbit ventricles with the His-Purkinje system (HPS). Simulations with reduced Na+ current due to a negative-shift in the steady-state channel inactivation showed that SCR-mediated delayed afterdepolarizations led to PVC formation in the HPS, where the electrotonic load was lower, conduction block, and reentry in the 3D myocardium. Moreover, arrhythmia initiation was only possible when intrinsic electrophysiological heterogeneity in action potential within the ventricles was present. In conclusion, while benign in healthy individuals SCR-mediated PVCs can lead to life-threatening ventricular arrhythmias when combined with Na+ channelopathies.


Subject(s)
Arrhythmias, Cardiac/pathology , Calcium/metabolism , Channelopathies/pathology , Heart Ventricles/pathology , Sodium/metabolism , Action Potentials , Animals , Arrhythmias, Cardiac/physiopathology , Computer Simulation , Heart Conduction System/pathology , Heart Conduction System/physiopathology , Heart Ventricles/physiopathology , Models, Cardiovascular , Myocytes, Cardiac/metabolism , Purkinje Fibers/pathology , Purkinje Fibers/physiopathology , Rabbits , Stochastic Processes , Ventricular Premature Complexes/pathology , Ventricular Premature Complexes/physiopathology
14.
J Comput Phys ; 346: 191-211, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28819329

ABSTRACT

Anatomically accurate and biophysically detailed bidomain models of the human heart have proven a powerful tool for gaining quantitative insight into the links between electrical sources in the myocardium and the concomitant current flow in the surrounding medium as they represent their relationship mechanistically based on first principles. Such models are increasingly considered as a clinical research tool with the perspective of being used, ultimately, as a complementary diagnostic modality. An important prerequisite in many clinical modeling applications is the ability of models to faithfully replicate potential maps and electrograms recorded from a given patient. However, while the personalization of electrophysiology models based on the gold standard bidomain formulation is in principle feasible, the associated computational expenses are significant, rendering their use incompatible with clinical time frames. In this study we report on the development of a novel computationally efficient reaction-eikonal (R-E) model for modeling extracellular potential maps and electrograms. Using a biventricular human electrophysiology model, which incorporates a topologically realistic His-Purkinje system (HPS), we demonstrate by comparing against a high-resolution reaction-diffusion (R-D) bidomain model that the R-E model predicts extracellular potential fields, electrograms as well as ECGs at the body surface with high fidelity and offers vast computational savings greater than three orders of magnitude. Due to their efficiency R-E models are ideally suitable for forward simulations in clinical modeling studies which attempt to personalize electrophysiological model features.

15.
Cardiovasc Res ; 107(1): 175-83, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25969391

ABSTRACT

AIMS: Premature ventricular complexes (PVCs) due to spontaneous calcium (Ca) release (SCR) events at the cell level can precipitate ventricular arrhythmias. However, the mechanistic link between SCRs and PVC formation remains incompletely understood. The aim of this study was to investigate the conditions under which delayed afterdepolarizations resulting from stochastic subcellular SCR events can overcome electrotonic source-sink mismatch, leading to PVC initiation. METHODS AND RESULTS: A stochastic subcellular-scale mathematical model of SCR was incorporated in a realistic model of the rabbit ventricles and Purkinje system (PS). Elevated levels of diastolic sarcoplasmic reticulum Ca(2+) (CaSR) were imposed until triggered activity was observed, allowing us to compile statistics on probability, timing, and location of PVCs. At CaSR≥ 1500 µmol/L PVCs originated in the PS. When SCR was incapacitated in the PS, PVCs also emerged in the ventricles, but at a higher CaSR (≥1550 µmol/L) and with longer waiting times. For each model configuration tested, the probability of PVC occurrence increased from 0 to 100% within a well-defined critical CaSR range; this transition was much more abrupt in organ-scale models (∼50 µmol/L CaSR range) than in the tissue strand (∼100 µmol/L) or single-cell (∼450 µmol/L) models. Among PVCs originating in the PS, ∼68% were located near Purkinje-ventricular junctions (<1 mm). CONCLUSION: SCR events overcome source-sink mismatch to trigger PVCs at a critical CaSR threshold. Above this threshold, PVCs emerge due to increased probability and reduced variability in timing of SCR events, leading to significant diastolic depolarization. Sites of lower electronic load, such as the PS, are preferential locations for triggering.


Subject(s)
Arrhythmias, Cardiac/etiology , Calcium/metabolism , Action Potentials , Animals , Bundle of His/physiology , Computer Simulation , Heart Failure/physiopathology , Heart Ventricles , Rabbits
16.
IEEE Trans Biomed Eng ; 61(3): 900-10, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24557691

ABSTRACT

Advanced medical imaging technologies provide a wealth of information on cardiac anatomy and structure at a paracellular resolution, allowing to identify microstructural discontinuities which disrupt the intracellular matrix. Current state-of-the-art computer models built upon such datasets account for increasingly finer anatomical details, however, structural discontinuities at the paracellular level are typically discarded in the model generation process, owing to the significant costs which incur when using high resolutions for explicit representation. In this study, a novel discontinuous finite element (dFE) approach for discretizing the bidomain equations is presented, which accounts for fine-scale structures in a computer model without the need to increase spatial resolution. In the dFE method, this is achieved by imposing infinitely thin lines of electrical insulation along edges of finite elements which approximate the geometry of discontinuities in the intracellular matrix. Simulation results demonstrate that the dFE approach accounts for effects induced by microscopic size scale discontinuities, such as the formation of microscopic virtual electrodes, with vast computational savings as compared to high resolution continuous finite element models. Moreover, the method can be implemented in any standard continuous finite element code with minor effort.


Subject(s)
Endomyocardial Fibrosis/pathology , Models, Cardiovascular , Myocardium/pathology , Algorithms , Animals , Computer Simulation , Endomyocardial Fibrosis/physiopathology , Finite Element Analysis , Heart/physiology , Heart Ventricles/cytology , Heart Ventricles/pathology , Image Processing, Computer-Assisted , Myocytes, Cardiac/cytology , Rabbits
19.
IEEE Trans Biomed Eng ; 60(8): 2339-49, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23559023

ABSTRACT

Fibrosis is thought to play an important role in the formation and maintenance of atrial fibrillation (AF). The propensity of fibrosis to increase AF vulnerability depends not only on its amount, its texture plays a crucial role as well. While the detection of fibrotic tissue patches in the atria with extracellular recordings is feasible based on the analysis of electrogram fractionation, as used in clinical practice to identify ablation targets, the classification of fibrotic texture is a more challenging problem. This study seeks to establish a method for the electroanatomical characterization of the fibrotic textures based on the analysis of electrogram fractionation. The proposed method exploits the dependence of fractionation patterns on the incidence direction of wavefronts which differs significantly as a function of texture. A histologically detailed computer model of the right atrial isthmus was developed for testing the method. A stimulation protocol was conceived which generated various incidence directions for any given recording site where electrograms were computed. A classification method is derived then for discriminating three types of fibrosis, no fibrosis (control), diffuse, and patchy fibrosis. Simulation results showed that electrogram fractionation and amplitudes and their dependence upon incidence direction allow a robust discrimination between different classes of fibrosis. Finally, to minimize the technical effort, sensitivity analysis was performed to identify a minimum number of incidence directions required for robust classification.


Subject(s)
Electrocardiography/methods , Endomyocardial Fibrosis/pathology , Endomyocardial Fibrosis/physiopathology , Heart Atria/pathology , Heart Atria/physiopathology , Models, Anatomic , Models, Cardiovascular , Algorithms , Animals , Body Surface Potential Mapping/methods , Computer Simulation , Heart Conduction System/pathology , Heart Conduction System/physiopathology , Rabbits , Reproducibility of Results , Sensitivity and Specificity
20.
Biomed Tech (Berl) ; 57(5): 371-82, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23027582

ABSTRACT

Microstructural heterogeneities in cardiac tissue, such as embedded connective tissue secondary to fibrosis, may lead to complex patterns of electrical activation that are reflected in the fractionation of extracellularly recorded electrograms. The decomposition of such electrograms into non-fractionated components is expected to provide additional information to allow a more precise classification of the microstructural properties adjacent to a given recording site. For the sake of this, an analytic signal model is introduced in this study that is capable of reliably identifying extracellular waveforms associated with sites of initiating, free-running, and terminating or colliding activation wavefronts. Using this signal model as a template, a procedure is developed for the automatic decomposition of complex fractionated electrograms into non-fractionated components. The decomposition method has been validated using electrograms obtained from one- and two-dimensional computer simulations in which all relevant intracellular and extracellular quantities are accessible at a very high spatiotemporal resolution and can be manipulated in a controlled manner. Fractionated electrograms were generated in these models by incorporating microstructural obstacles that mimicked inlays of connective tissue. Using this signal model, fractionated electrograms emerging from microstructural heterogeneities in the submillimeter range with latencies between components down to 0.6 ms can be decomposed.


Subject(s)
Colon, Sigmoid/diagnostic imaging , Electrocardiography/instrumentation , Heart Atria/chemistry , Signal Processing, Computer-Assisted/instrumentation , Computer Simulation , Fibrosis , Heart Atria/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...