Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Med Dir Assoc ; 17(9): 789-96, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27324808

ABSTRACT

Skeletal muscle is recognized as vital to physical movement, posture, and breathing. In a less known but critically important role, muscle influences energy and protein metabolism throughout the body. Muscle is a primary site for glucose uptake and storage, and it is also a reservoir of amino acids stored as protein. Amino acids are released when supplies are needed elsewhere in the body. These conditions occur with acute and chronic diseases, which decrease dietary intake while increasing metabolic needs. Such metabolic shifts lead to the muscle loss associated with sarcopenia and cachexia, resulting in a variety of adverse health and economic consequences. With loss of skeletal muscle, protein and energy availability is lowered throughout the body. Muscle loss is associated with delayed recovery from illness, slowed wound healing, reduced resting metabolic rate, physical disability, poorer quality of life, and higher health care costs. These adverse effects can be combatted with exercise and nutrition. Studies suggest dietary protein and leucine or its metabolite ß-hydroxy ß-methylbutyrate (HMB) can improve muscle function, in turn improving functional performance. Considerable evidence shows that use of high-protein oral nutritional supplements (ONS) can help maintain and rebuild muscle mass and strength. We review muscle structure, function, and role in energy and protein balance. We discuss how disease- and age-related malnutrition hamper muscle accretion, ultimately causing whole-body deterioration. Finally, we describe how specialized nutrition and exercise can restore muscle mass, strength, and function, and ultimately reverse the negative health and economic outcomes associated with muscle loss.


Subject(s)
Muscle, Skeletal/metabolism , Amino Acids/metabolism , Diet , Exercise , Female , Glucose/metabolism , Humans , Male , Muscle, Skeletal/physiology
2.
J Cachexia Sarcopenia Muscle ; 7(1): 68-78, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27065075

ABSTRACT

BACKGROUND: L-Leu and its metabolite ß-hydroxy-ß-methylbutyrate (HMB) stimulate muscle protein synthesis enhancing the phosphorylation of proteins that regulate anabolic signalling pathways. Alterations in these pathways are observed in many catabolic diseases, and HMB and L-Leu have proven their anabolic effects in in vivo and in vitro models. The aim of this study was to compare the anabolic effects of L-Leu and HMB in myotubes grown in the absence of any catabolic stimuli. METHODS: Studies were conducted in vitro using rat L6 myotubes under normal growth conditions (non-involving L-Leu-deprived conditions). Protein synthesis and mechanistic target of rapamycin signalling pathway were determined. RESULTS: Only HMB was able to increase protein synthesis through a mechanism that involves the phosphorylation of the mechanistic target of rapamycin as well as its downstream elements, pS6 kinase, 4E binding protein-1, and eIF4E. HMB was significantly more effective than L-Leu in promoting these effects through an activation of protein kinase B/Akt. Because the conversion of L-Leu to HMB is limited in muscle, L6 cells were transfected with a plasmid that codes for α-keto isocaproate dioxygenase, the key enzyme involved in the catabolic conversion of α-keto isocaproate into HMB. In these transfected cells, L-Leu was able to promote protein synthesis and mechanistic target of rapamycin regulated pathway activation equally to HMB. Additionally, these effects of leucine were reverted to a normal state by mesotrione, a specific inhibitor of α-keto isocaproate dioxygenase. CONCLUSION: Our results suggest that HMB is an active L-Leu metabolite able to maximize protein synthesis in skeletal muscle under conditions, in which no amino acid deprivation occurred. It may be proposed that supplementation with HMB may be very useful to stimulate protein synthesis in wasting conditions associated with chronic diseases, such as cancer or chronic heart failure.

3.
PLoS One ; 10(8): e0135614, 2015.
Article in English | MEDLINE | ID: mdl-26267903

ABSTRACT

ß-Hydroxy-ß-methylbutyrate (HMB) has been shown to enhance cell survival, differentiation and protein turnover in muscle, mainly activating phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinases/ extracellular-signal-regulated kinases (MAPK/ERK) signaling pathways. Since these two pathways are related to neuronal survival and differentiation, in this study, we have investigated the neurotrophic effects of HMB in mouse neuroblastoma Neuro2a cells. In Neuro2a cells, HMB promotes differentiation to neurites independent from any effects on proliferation. These effects are mediated by activation of both the PI3K/Akt and the extracellular-signal-regulated kinases (ERK1/2) signaling as demonstrated by the use of specific inhibitors of these two pathways. As myocyte-enhancer factor 2 (MEF2) family of transcription factors are involved in neuronal survival and plasticity, the transcriptional activity and protein levels of MEF2 were also evaluated. HMB promoted MEF2-dependent transcriptional activity mediated by the activation of Akt and ERK1/2 pathways. Furthermore, HMB increases the expression of brain glucose transporters 1 (GLUT1) and 3 (GLUT3), and mTOR phosphorylation, which translates in a higher protein synthesis in Neuro2a cells. Furthermore, Torin1 and rapamycin effects on MEF2 transcriptional activity and HMB-dependent neurite outgrowth support that HMB acts through mTORC2. Together, these findings provide clear evidence to support an important role of HMB in neurite outgrowth.


Subject(s)
Neurites/drug effects , Neurites/metabolism , Valerates/pharmacology , Animals , Brain/drug effects , Brain/metabolism , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 3/metabolism , MEF2 Transcription Factors/metabolism , Mice , Naphthyridines/pharmacology , Neuroblastoma/metabolism , Phosphorylation/drug effects , Signal Transduction , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
4.
PLoS One ; 10(2): e0117520, 2015.
Article in English | MEDLINE | ID: mdl-25658432

ABSTRACT

Dexamethasone-induced muscle atrophy is due to an increase in protein breakdown and a decrease in protein synthesis, associated with an over-stimulation of the autophagy-lysosomal pathway. These effects are mediated by alterations in IGF-1 and PI3K/Akt signaling. In this study, we have investigated the effects of ß-Hydroxy-ß-methylbutyrate (HMB) on the regulation of autophagy and proteosomal systems. Rats were treated during 21 days with dexamethasone as a model of muscle atrophy. Co-administration of HMB attenuated the effects promoted by dexamethasone. HMB ameliorated the loss in body weight, lean mass and the reduction of the muscle fiber cross-sectional area (shrinkage) in gastrocnemius muscle. Consequently, HMB produced an improvement in muscle strength in the dexamethasone-treated rats. To elucidate the molecular mechanisms responsible for these effects, rat L6 myotubes were used. In these cells, HMB significantly attenuated lysosomal proteolysis induced by dexamethasone by normalizing the changes observed in autophagosome formation, LC3 II, p62 and Bnip3 expression after dexamethasone treatment. HMB effects were mediated by an increase in FoxO3a phosphorylation and concomitant decrease in FoxO transcriptional activity. The HMB effect was due to the restoration of Akt signaling diminished by dexamethasone treatment. Moreover, HMB was also involved in the regulation of the activity of ubiquitin and expression of MurF1 and Atrogin-1, components of the proteasome system that are activated or up-regulated by dexamethasone. In conclusion, in vivo and in vitro studies suggest that HMB exerts protective effects against dexamethasone-induced muscle atrophy by normalizing the Akt/FoxO axis that controls autophagy and ubiquitin proteolysis.


Subject(s)
Autophagy/drug effects , Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Lysosomes/drug effects , Muscle, Skeletal/drug effects , Valerates/pharmacology , Animals , Lysosomes/metabolism , Male , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Strength/drug effects , Muscle, Skeletal/metabolism , Muscular Atrophy/chemically induced , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Phosphorylation/drug effects , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Valerates/therapeutic use
5.
Biotechnol Prog ; 27(1): 232-40, 2011.
Article in English | MEDLINE | ID: mdl-21312370

ABSTRACT

Transglutaminases (TGases) catalyze protein post-translational modification by ε-(γ-glutamyl) links and covalent polyamine conjugation. In plants, this enzyme is poorly characterized and only the maize plastidial TGase gene (tgz) has been cloned. The tgz gene (Patent WWO03102128) had been subcloned and overexpressed in Escherichia coli cells, and the recombinant protein (TGZp) was present mainly in inclusion bodies (IB) fraction. In this work, after overexpression of TGZ15p and SDS-PAGE IB fraction analysis, bands about 65 and 56 kDa were obtained. Western blot, alkylation and MALDI-TOF/TOF analyses indicated that the 56 kDa band corresponded to a truncated sequence from the native TGZ15p (expected MW 65 kDa), by elimination of a chloroplast signal peptide fragment during expression processing. So that large-scale protein production and protein crystallization can be applied, we characterized the TGZ15p enzyme activity in the IB protein fraction, with and without refolding. Results indicate that it presented the biochemical characteristics of other described TGases, showing a certain plant-substrate preference. Solubilization of the IB fraction with Triton X-100 as nondenaturing detergent yielded active TGZ without the need for refolding, giving activity values comparable to those of the refolded protein, indicating that this is a valuable, faster way to obtain TGZ active protein.


Subject(s)
Escherichia coli/genetics , Inclusion Bodies/metabolism , Protein Folding , Transglutaminases/metabolism , Zea mays/enzymology , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Microscopy, Electron, Transmission , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Transglutaminases/genetics
6.
Org Biomol Chem ; 2(11): 1651-8, 2004 Jun 07.
Article in English | MEDLINE | ID: mdl-15162219

ABSTRACT

Spiroketal naphthodecalins are readily assembled by Barton's base mediated Ullmann binaphthyl ether coupling, Dakin reactions and hypervalent iodine spirocyclization. The core structures can be further diversified by enone addition and Stille coupling reactions. Nanomolar inhibitors for the Trx/TrxR redox control system were prepared by this approach and compared to series of natural product isolates. Cytotoxicity in MCF-7 cell assays ranged from an IC50 of 1.6 to >100 microM.


Subject(s)
Enzyme Inhibitors/pharmacology , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Thioredoxins/antagonists & inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Molecular Structure , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...