Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 23(18): 18111-28, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27259959

ABSTRACT

The Iguaçu River, located at the Southern part of Brazil, has a great socioeconomic and environmental importance due to its high endemic fish fauna and its potential to generate hydroelectric power. However, Iguaçu River suffers intense discharge of pollutants in the origin of the river. In a previous report, the local environmental agency described water quality to improve along the river course. However, no study with integrated evaluation of chemical analysis and biological responses has been reported so far for the Iguaçu River. In the current study, three different Brazilian fish species (Astyanax bifasciatus, Chrenicicla iguassuensis, and Geophagus brasiliensis) were captured in the five cascading reservoirs of Iguaçu River for a multi-biomarker study. Chemical analysis in water, sediment, and muscle indicated high levels of bioavailable metals in all reservoirs. Polycyclic aromatic hydrocarbons (PAHs) were detected in the bile of the three fish species. Integration of the data through a FA/PCA analysis demonstrated the poorest environmental quality of the reservoir farthest from river's source, which is the opposite of what has been reported by the environmental agency. The presence of hazardous chemicals in the five reservoirs of Iguaçu River, their bioaccumulation in the muscle of fish, and the biological responses showed the impacts of human activities to this area and did not confirm a gradient of pollution between the five reservoirs, from the source toward Iguaçu River's mouth. Therefore, diffuse source of pollutants present along the river course are increasing the risk of exposure to biota and human populations.


Subject(s)
Biota , Rivers/chemistry , Water Pollutants, Chemical/analysis , Animals , Biological Availability , Brazil , Fishes , Polycyclic Aromatic Hydrocarbons/analysis , Water Quality
2.
Environ Sci Pollut Res Int ; 23(6): 5179-88, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26555884

ABSTRACT

The impact of nanoparticles on fish health is still a matter of debate, since nanotechnology is quite recent. In this study, freshwater benthonic juvenile fish Prochilodus lineatus were exposed through water to three concentrations of TiO2 (0.1, 1, and 10 µg l(-1)) and ZnO (7, 70, and 700 µg l(-1)) nanoparticles, as well as to a mixture of both (TiO2 1 µg l(-1) + ZnO 70 µg l(-1)) for 5 and 30 days. Nanoparticle characterization revealed an increase of aggregate size in the function of concentration, but suspensions were generally stable. Fish mortality was high at subchronic exposure to 70 and 700 µg l(-1) of ZnO. Nanoparticle exposure led to decreased acetylcholinesterase activity either in the muscle or in the brain, depending on particle composition (muscle-TiO2 10 µg l(-1); brain-ZnO 7 and 700 µg l(-1)), and protein oxidative damage increased in the brain (ZnO 70 µg l(-1)) and gills (ZnO 70 µg l(-1) and mixture) but not in the liver. Exposed fish had more frequent alterations in the liver (necrosis, vascular congestion, leukocyte infiltration, and basophilic foci) and gills (hyperplasia and epithelial damages, e.g., epithelial disorganization and epithelial loss) than the control fish. Thus, predicted concentrations of TiO2 and ZnO nanoparticles caused detectable effects on P. lineatus that may have important consequences to fish health. But, these effects are much more subtle than those usually reported in the scientific literature for high concentrations or doses of metal nanoparticles.


Subject(s)
Fishes , Metal Nanoparticles/toxicity , Titanium/toxicity , Water Pollutants, Chemical/toxicity , Zinc Oxide/toxicity , Animals , Fresh Water , Gills/drug effects , Gills/metabolism , Liver/drug effects , Liver/metabolism , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...