Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Publication year range
1.
Rev. esp. med. nucl. imagen mol. (Ed. impr.) ; 41(5): 300-310, sept. - oct. 2022. tab, graf
Article in Spanish | IBECS | ID: ibc-211037

ABSTRACT

Objetivo El objetivo de este estudio es la implementación en una Unidad de Radiofarmacia Hospitalaria de una metodología de análisis de riesgos para poder identificar de forma proactiva los posibles modos de fallo y priorizar medidas correctivas. Material y métodos Mediante el análisis modal de fallos y efectos (AMFE) se identificaron los posibles modos de fallo de cada una de las etapas de los procesos de prescripción, preparación y administración de los radiofármacos de diagnóstico y de terapia. A partir de las variables de severidad, probabilidad y detectabilidad se cuantificó el riesgo mediante el número de prioridad de riesgo (NPR) para cada modo de fallo, subproceso y tipo de radiofármaco. Se establecieron medidas de mejora y se calculó la reducción en el NPR. Resultados Se identificaron 96 modos de fallos (58 para los radiofármacos de diagnóstico y 38 para los de terapia). La identificación biunívoca del paciente con el radiofármaco es el modo de fallo con mayor NPR (60) y el subproceso de marcaje celular el que presenta mayor riesgo (NPR 286). Como resultado de las medidas de mejora se disminuyó el NPR global en un 22% para los radiofármacos de diagnóstico y 20% para los de terapia. Esta reducción sería del 46 y el 31%, respectivamente, si se implantara un software de radiofarmacia y tecnología de código de barras en la administración. Conclusiones La aplicación de la metodología AMFE como herramienta de análisis de riesgos permite identificar los puntos críticos de los procesos relacionados con los radiofármacos y priorizar medidas para disminuir el riesgo (AU)


Aim The aim of this study is the implementation in a Hospital Radiopharmacy Unit of a risk analysis methodology in order to proactively identify possible failure modes and prioritize corrective measures. Materials and methods By means of the failure modes and effects analysis (FMEA), the possible failure modes of each of the stages of the processes of prescription, preparation, and administration of radiopharmaceuticals for diagnostic and therapy were identified. From the variables of severity, probability and detectability, the risk was quantified using the Risk Priority Number (RPN) for each failure mode, sub-process, and type of radiopharmaceutical. Improvement measures were established and the reduction in the RPN value was calculated. Result A total of 96 failure modes were identified (58 for diagnostic radiopharmaceuticals and 38 for therapy). Biunivocal identification of the patient with the radiopharmaceutical is the failure mode with the highest RPN (60) and the radiolabeling cell sub-process the one that has the highest risk (RPN 286). As a result of the improvement measures, the overall RPN was reduced by 22% for diagnostic radiopharmaceuticals and 20% for therapy. This reduction would be 46% and 31% respectively if radiopharmacy software and a barcode technology in the administration were implemented. Conclusions The application of the FMEA methodology as a risk analysis tool allows to identify the critical points of the processes related to radiopharmaceuticals and prioritize measures to reduce the risk (AU)


Subject(s)
Humans , Healthcare Failure Mode and Effect Analysis , Radiopharmaceuticals/therapeutic use , Risk Assessment , Pharmacy Service, Hospital
2.
Article in English | MEDLINE | ID: mdl-35668016

ABSTRACT

AIM: The aim of this study is the implementation in a Hospital Radiopharmacy Unit of a risk analysis methodology in order to proactively identify possible failure modes and prioritize corrective measures. MATERIALS AND METHODS: By means of the failure modes and effects analysis (FMEA), the possible failure modes of each of the stages of the processes of prescription, preparation, and administration of radiopharmaceuticals for diagnostic and therapy were identified. From the variables of severity, probability and detectability, the risk was quantified using the Risk Priority Number (RPN) for each failure mode, sub-process, and type of radiopharmaceutical. Improvement measures were established and the reduction in the RPN value was calculated. RESULTS: A total of 96 failure modes were identified (58 for diagnostic radiopharmaceuticals and 38 for therapy). Biunivocal identification of the patient with the radiopharmaceutical is the failure mode with the highest RPN (60) and the radiolabeling cell sub-process the one that has the highest risk (RPN 286). As a result of the improvement measures, the overall RPN was reduced by 22% for diagnostic radiopharmaceuticals and 20% for therapy. This reduction would be 46% and 31% respectively if radiopharmacy software and a barcode technology in the administration were implemented. CONCLUSIONS: The application of the FMEA methodology as a risk analysis tool allows to identify the critical points of the processes related to radiopharmaceuticals and prioritize measures to reduce the risk.


Subject(s)
Healthcare Failure Mode and Effect Analysis , Hospitals , Humans , Radiopharmaceuticals/therapeutic use , Risk Assessment
7.
Rev Esp Med Nucl ; 25(1): 20-5, 2006.
Article in Spanish | MEDLINE | ID: mdl-16540007

ABSTRACT

OBJECTIVE: To study the influence of the 18F-FDG radioactive concentration and the usual greatest storage time of the radiopharmaceutical at the Radiopharmacy Unit (RU) over its radiochemical purity. MATERIAL AND METHODS: Thirty 18F-FDG preparations coming from different batches were studied. The radiochemical purity was determined at the RU by means of TLC to saline-diluted (1:10) and undiluted samples of each preparation, in the early 30 minutes since its arrival and 5 hours later. The radiochemical purity of the original 18F-FDG was determined at the PET radiopharmaceutical producer Laboratory (PETL) by means of HPLC in the early hour since the 18F-FDG dispensing. RESULTS: The increase of 18F-Fluoride found in the (5 h-30 min) period was significantly greater in the samples without diluting than in the diluted ones (p < 0.0001). We found a significant correlation between the percent of this increase of 18F-Fluoride (y) and the radioactive concentration of the 18F-FDG (x): y = 0.00061x + 0.1759 (R2 = 0.198; p < 0.0005). The percent of 18F-Fluoride determined at the RU was significantly higher than the percent of 18F-Fluoride determined at the PETL (p < 0.0001). A significant correlation between the differences of the percent of 18F-Fluoride determined by TLC and HPLC (y) and the radioactive concentration (x) was found: y = 0.0139x + 0.3146 (R2 = 0.196; p = 0.016). A significant correlation among the differences of percent 18F-Fluoride determined by TLC and HPLC ([%F] RU - [%F] PETL), the radioactive concentration (RC) and the time since the radiopharmaceutical dispensing (t) was found: [%F] RU - [%F] PETL = 0.01159*RC (mCi/mL) + 0.250*t (h) - 0.01903 (R2 = 0.226; p < 0.014). CONCLUSIONS: The stability of the 18F-FDG preparations with time increases when diminishing its concentration. We recommended the dilution of these preparations with physiological saline solution.


Subject(s)
Fluorodeoxyglucose F18/chemistry , Acetylation , Chromatography, High Pressure Liquid , Drug Stability , Drug Storage , Fluorine Radioisotopes/analysis , Radioactivity , Time Factors
8.
Rev. esp. med. nucl. (Ed. impr.) ; 25(1): 20-25, ene.-feb. 2006. tab, graf
Article in Es | IBECS | ID: ibc-042509

ABSTRACT

Objetivo. Determinar la influencia de la concentración radiactiva de la 2-[ 18F]-fluoro-2-desoxi-D-glucosa ( 18F-FDG) y el tiempo de almacenamiento máximo habitual del radiofármaco en la Unidad de Radiofarmacia (UR) sobre su pureza radioquímica. Material y métodos. Se estudiaron 30 preparaciones de 18F-FDG procedentes de lotes diferentes. Se determinó la pureza radioquímica en la UR dentro de los 30 minutos siguientes a su recepción y a las 5 horas mediante cromatografía en capa fina (TLC) a las muestras diluidas con suero salino fisiológico (1:10) y sin diluir. La pureza radioquímica también se determinó en el Laboratorio de radiofármacos PET (LPET) dentro de la primera hora posterior a su dispensación por cromatografía líquida a alta presión (HPLC). Resultados. El aumento de porcentaje de 18F-Fluoruro a las 5 horas fue significativamente mayor en las muestras sin diluir que en las diluidas (p < 0,0001), encontrándose una correlación significativa entre el aumento de porcentaje de 18F-Fluoruro con el tiempo (y) respecto a la concentración radiactiva (x): y = 0,0061x + 0,1759 (R 2 = 0,1977; p < 0,0005). El porcentaje de 18F-Fluoruro determinado en la UR fue significativamente mayor que el determinado en el LPET (p < 0,0001), obteniéndose una correlación significativa entre el aumento de porcentaje de 18F-Fluoruro (y) y la concentración radiactiva (x): y = 0,0139x + 0,3146 (R 2 = 0,196; p = 0,016). Se obtuvo una correlación significativa entre este aumento ([ %F] UR ­ [ %F] LPET), la concentración radiactiva (CR) y el tiempo desde la dispensación (t): [ %F] UR ­ [ %F] LPET = 0,01159*CR (mCi/ml) + 0,250*t (h) ­ 0,01903 (R 2 = 0,226; p = 0,014). Conclusiones. La estabilidad de las preparaciones de 18F-FDG aumenta al disminuir su concentración. Aconsejamos la dilución de estas preparaciones con solución salina fisiológica


Objective. To study the influence of the 18F-FDG radioactive concentration and the usual greatest storage time of the radiopharmaceutical at the Radiopharmacy Unit (RU) over its radiochemical purity. Material and methods. Thirty 18F-FDG preparations coming from different batches were studied. The radiochemical purity was determined at the RU by means of TLC to saline-diluted (1:10) and undiluted samples of each preparation, in the early 30 minutes since its arrival and 5 hours later. The radiochemical purity of the original 18F-FDG was determined at the PET radiopharmaceutical producer Laboratory (PETL) by means of HPLC in the early hour since the 18F-FDG dispensing. Results. The increase of 18F-Fluoride found in the (5 h-30 min) period was significantly greater in the samples without diluting than in the diluted ones (p < 0,0001). We found a significant correlation between the percent of this increase of 18F-Fluoride (y) and the radioactive concentration of the 18F-FDG (x): y = 0,00061x + 0,1759 (R 2 = 0,198; p < 0,0005). The percent of 18F-Fluoride determined at the RU was significantly higher than the percent of 18F-Fluoride determined at the PETL (p < 0,0001). A significant correlation between the differences of the percent of 18F-Fluoride determined by TLC and HPLC (y) and the radioactive concentration (x) was found: y = 0,0139x + 0,3146 (R 2 = 0,196; p = 0,016). A significant correlation among the differences of percent 18F-Fluoride determined by TLC and HPLC ([ %F] RU ­ [ %F] PETL), the radioactive concentration (RC) and the time since the radiopharmaceutical dispensing (t) was found: [ %F] RU ­ [ %F] PETL = 0,01159*RC (mCi/mL) + 0,250*t (h) ­ 0,01903 (R 2 = 0,226; p < 0,014). Conclusions. The stability of the 18F-FDG preparations with time increases when diminishing its concentration. We recommended the dilution of these preparations with physiological saline solution


Subject(s)
Humans , Radiopharmaceuticals/chemistry , Drug Storage/methods , 35476 , Drug Storage/standards , Fluorodeoxyglucose F18/chemistry , Time Factors , Radionuclide Density Factor , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...