Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 5(6): 2953-2964, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-33405598

ABSTRACT

Tendon injuries are frequent and occur in the elderly, young, and athletic populations. The inadequate number of donors combined with many challenges associated with autografts, allografts, xenografts, and prosthetic devices have added to the value of engineering biological substitutes, which can be implanted to repair the damaged tendons. Electrospun scaffolds have the potential to mimic the native tissue structure along with desired mechanical properties and, thus, have attracted noticeable attention. In order to improve the biological responses of these fibrous structures, we designed and fabricated 3D multilayered composite scaffolds, where an electrospun nanofibrous substrate was coated with a thin layer of cell-laden hydrogel. The whole construct composition was optimized to achieve adequate mechanical and physical properties as well as cell viability and proliferation. Mesenchymal stem cells (MSCs) were differentiated by the addition of bone morphogenetic protein 12 (BMP-12). To mimic the natural function of tendons, the cell-laden scaffolds were mechanically stimulated using a custom-built bioreactor. The synergistic effect of mechanical and biochemical stimulation was observed in terms of enhanced cell viability, proliferation, alignment, and tenogenic differentiation. The results suggested that the proposed constructs can be used for engineering functional tendons.

SELECTION OF CITATIONS
SEARCH DETAIL
...