Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Toxicol Environ Health A ; 86(18): 661-677, 2023 09 17.
Article in English | MEDLINE | ID: mdl-37477220

ABSTRACT

Rapid development of nanotechnology, particularly nanoparticles of pesticides, has facilitated the transformation of traditional agriculture. However, testing their effectiveness is essential for avoiding any environmental or adverse human health risk attributed to nanoparticle-based formulations, especially insecticides. Recently, organic nanoparticles of bifenthrin, a pyrethroid insecticide, were successfully synthesized by laser ablation of solids in liquid technique, with the most probable size of 5 nm. The aim of the present study was to examine the effects of acute exposure to bifenthrin (BIF) or bifenthrin nanoparticles (BIFNP) on larval-adult viability, developmental time, olfactory capacity, longevity, productivity defined as the number of eggs per couple, and genotoxicity in Drosophila melanogaster. Data demonstrated that BIFNP produced a marked delay in developmental time, significant reduction in viability and olfactory ability compared to BIF. No marked differences were detected between BIF and BIFNP on longevity and productivity. Genotoxicity findings indicated that only BIF, at longer exposure duration increased genetic damage.


Subject(s)
Insecticides , Nanoparticles , Pyrethrins , Humans , Animals , Drosophila melanogaster , Pyrethrins/toxicity , Insecticides/toxicity , Nanoparticles/toxicity , DNA Damage
2.
Sci Rep ; 7(1): 8627, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28819156

ABSTRACT

We present evidence on the effects of exogenous heating by water bath (WB) and magnetic hyperthermia (MHT) on a glial micro-tumor phantom. To this, magnetic nanoparticles (MNPs) of 30-40 nm were designed to obtain particle sizes for maximum heating efficiency. The specific power absorption (SPA) values (f = 560 kHz, H = 23.9 kA/m) for as prepared colloids (533-605 W/g) dropped to 98-279 W/g in culture medium. The analysis of the intracellular MNPs distribution showed vesicle-trapped MNPs agglomerates spread along the cytoplasm, as well as large (~0.5-0.9 µm) clusters attached to the cell membrane. Immediately after WB and MHT (T = 46 °C for 30 min) the cell viability was ≈70% and, after 4.5 h, decreased to 20-25%, demonstrating that metabolic processes are involved in cell killing. The analysis of the cell structures after MHT revealed a significant damage of the cell membrane that is correlated to the location of MNPs clusters, while local cell damage were less noticeable after WB without MNPs. In spite of the similar thermal effects of WB and MHT on the cell viability, our results suggest that there is an additional mechanism of cell damage related to the presence of MNPs at the intracellular space.


Subject(s)
Hot Temperature , Magnetic Fields , Magnetite Nanoparticles/chemistry , Microglia/cytology , Animals , Cell Line , Cell Survival , Colloids/chemistry , Hyperthermia, Induced/methods , Magnetics , Magnetite Nanoparticles/ultrastructure , Mice , Microglia/ultrastructure , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...