Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 223: 119020, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36049245

ABSTRACT

Wastewater analysis of Δ9-tetrahydrocannabinol (THC) biomarkers can provide essential information on trends in cannabis consumption. Although analysis is mostly focused on the aqueous phase, previous studies have illustrated the need of improving the measurements of raw influent wastewater (IWW) considering also suspended solids. This is important for cannabis biomarkers, because a substantial part of them is expected to be found in the suspended solids due to their more lipophilic character compared with other metabolites/drugs included in these types of studies. However, it remains open to which extent trend estimates might be affected by solely analysing the liquid phase. To investigate this aspect, robust analytical methodologies are required to measure both the liquid and solid phases of IWW. In this work, we firstly tested liquid-liquid extraction (LLE) for THC and its major metabolites (THCOH, and THCCOOH). Using LLE, no filtration or centrifugation step was required for raw IWW analysis, and the three analytes were extracted from both the liquid and the solid phase simultaneously. In parallel, the raw IWW was centrifuged and the obtained solid and liquid phases were analyzed separately: the liquid phase by both LLE and solid phase extraction (SPE) for comparison of data, and the suspended solids by solid-liquid extraction (SLE). The separate analysis of both phases in a number of samples revealed that a significant amount of cannabis biomarkers (ranging from 42 to 90%) was found in the suspended solids. In addition, the total amount of cannabis biomarkers obtained by analysing raw IWW on the one hand, and by separate analysis of the liquid and the solid phases, on the other hand, was in good agreement. Data from this study show that the sole analysis of the liquid phase would lead to a notable underestimation of cannabis biomarkers concentrations in IWW.


Subject(s)
Cannabis , Wastewater , Biomarkers , Cannabis/metabolism , Dronabinol/analysis , Dronabinol/metabolism , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Wastewater/analysis
2.
Environ Sci Pollut Res Int ; 28(19): 24008-24022, 2021 May.
Article in English | MEDLINE | ID: mdl-33415630

ABSTRACT

In this work, the activated persulfate oxidation of ciprofloxacin (CIP) using a low-grade titanium ore under sunlight or simulated sunlight were conducted to analyze the CIP degradation efficiency and to identify the transformation products (TPs) generated during oxidation under both types of irradiation sources by using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). All advance oxidation process experiments were performed in a 2700-mL raceway reactor at a pH value of ~ 6.5 and an initial CIP concentration of 1 mg/L, during 90 min of reaction time. The control experiments carried out under simulated sunlight achieved a 97.7 ± 0.6% degradation efficiency, using 385 W/m2 of irradiation with an average temperature increase of 11.7 ± 0.6 °C. While, the experiments under sunlight reached a 91.2 ± 1.3% degradation efficiency, under an average irradiation value of 19.2 ± 0.3 W/m2 in October-November 2019 at hours between 11:00 am and 3:00 pm with an average temperature increase of 1.4 ± 0.8 °C. Mass spectrometry results indicated that 14 of the 108 possible TPs reported in the literature were detected. The calculated exact mass, measured accurate mass, and its characteristic diagnostic fragment ions were listed, and two new TPs were tentative identified. The TP generation analysis showed that some specific compounds were detected in different time intervals with kinetic variations depending on the irradiation used. Consequently, two CIP degradation pathways were proposed, since the type of irradiation determines the CIP degradation mechanism. Graphical abstract.


Subject(s)
Ciprofloxacin , Water Pollutants, Chemical , Chromatography, Liquid , Oxidation-Reduction , Sunlight , Titanium , Water Pollutants, Chemical/analysis
3.
Environ Pollut ; 265(Pt A): 114722, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32454378

ABSTRACT

This work discusses the identification of the transformation products (TPs) generated during the photolytic degradation of dextromethorphan (DXM) and its metabolite dextrorphan (DXO), under simulated solar radiation in aqueous solutions (Milli-Q water and river water) in order to determinate its behavior into the aquatic environment. Tentative identification of the TPs was performed by liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/QTOF-MS), following a suspect screening approach. The use of high resolution-mass spectrometry (HRMS) allowed the tentative identification of DXM and DXO photoproducts based on the structure proposed by an in silico software, the accurate mass measurement, the MS/MS fragmentation pattern and the molecular formula finding. A total of 19 TPs were found to match some of the accurate masses included in a suspect list, and they were all tentatively identified by their characteristic MS-MS fragments. Most of the TPs identified showed a minor modified molecular structure like the introduction of hydroxyl groups, or demethylation. The time-evolution of precursors and TPs were monitored throughout the experiments, and degradation kinetics were presented for each analyte. Finally, the occurrence of DXM, DXO, and their tentatively proposed photodegradation TPs was evaluated in both surface and wastewater. In all real matrices, the results showed that the highest concentration was detected for DXO, followed by TP-244 (N-desmethyldextrorphan) and DXM.


Subject(s)
Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis , Chromatography, Liquid , Dextromethorphan , Dextrorphan , Photolysis , Wastewater
4.
Chemosphere ; 232: 152-163, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31154175

ABSTRACT

Agriculture is considered as the main source of water contamination by pesticides. However, food packaging or processing industries are also recognised as relevant point sources of contamination by these compounds, not yet investigated in depth. The objective of this work has been to improve current knowledge about the presence and concentration of pesticides in the effluent of a food processing industry, as well as to investigate their main transformation products (TPs). An analytical strategy combining target and suspect analysis has been applied to provide an evaluation of the effluents. The methodology involves solid-phase extraction (SPE) of wastewater samples followed by (i) liquid chromatography quadrupole-linear ion trap tandem mass spectrometry (LC-QqLIT-MS/MS) for quantitative target analysis and (ii) liquid chromatography coupled to quadrupole-time-of-flight high resolution mass spectrometry (LC-QTOF-HRMS) to identify non-target pesticides and possible TPs. The results revealed the presence of 17 of the target pesticides analysed and 3 additional ones as a result of the suspect screening performed by HRMS. The TPs were investigated for the pesticides found at the highest concentrations: imazalil (7038-19802 ng/L), pyrimethanil (744-9591 ng/L) and thiabendazole (341-926 ng/L). Up to 14 TPs could be tentatively identified, demonstrating the relevance of this type of studies. These data provide a better understanding of the occurrence of pesticides and their TPs in agro-food industrial effluents.


Subject(s)
Pesticides/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Agriculture , Chromatography, Liquid/methods , Environmental Monitoring , Food Industry , Food-Processing Industry , Solid Phase Extraction , Tandem Mass Spectrometry/methods , Thiabendazole/analysis , Wastewater/analysis , Water Pollution, Chemical/statistics & numerical data
5.
Sci Total Environ ; 664: 874-884, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30769311

ABSTRACT

Opioids, both as prescription drugs and abuse substances, have been a hot topic and a focus of discussion in the media for the last few years. Although the literature published shows the occurrence of opioids and some of their metabolites in the aquatic environment, there are scarce data in the application of high resolution mass spectrometry (HRMS) for the analysis of these compounds in the environment. The use of HRMS allows increasing the number of opioids that can be studied as well as the detection of unknown opioids, their metabolites and potential transformation products. In this work, a retrospective analysis for the identification of opioids and their metabolites using a curated database was applied to surface water and wastewater samples taken in the state of Minnesota (U.S.) in 2009, which were previously analyzed by liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS) for antidepressants. The database comprised >200 opioids including natural opiates (e.g. morphine and codeine), their semi-synthetic derivatives (e.g. heroin, hydromorphone, hydrocodone, oxycodone, oxymorphone, meperidine and buprenorphine), fully synthetic opioids (e.g. fentanyl, methadone, tramadol, dextromethorphan and propoxyphene), as well as some of their metabolites (e.g. 6-monoacetylcodeine, dextrorphan, EDDP, normorphine and O-desmethyltramadol). Moreover, additional MS-MS experiments were performed to confirm their identification, as well as to recognize fragmentation patterns and diagnostic ions for several opioids. These data provide a better understanding of the historical occurrence of opioids and their metabolites in surface waters impacted by wastewater sources. The concentrations of individual opioids in surface water and wastewater effluent varied from 8.8 (EDDP) to 1640 (tramadol) ngL-1 and from 12 (dihydrocodeine) to 1288 (tramadol) ngL-1, respectively. The opioids with higher overall frequency detections were tramadol, dextromethorphan and its metabolite, dextrorphan.


Subject(s)
Analgesics, Opioid/analysis , Environmental Monitoring , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Chromatography, Liquid , Codeine/analogs & derivatives , Data Analysis , Fentanyl , Heroin , Hydrocodone , Hydromorphone , Minnesota , Morphine , Morphine Derivatives , Oxycodone , Retrospective Studies , Substance Abuse Detection , Tandem Mass Spectrometry , Tramadol/analogs & derivatives
6.
J Chromatogr A ; 1507: 84-94, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28583389

ABSTRACT

It is well known that wastewater treatment plant (WWTP) effluents usually contain micropollutants such as pharmaceuticals (or their transformation products, TPs) or pesticides, which is a major issue when evaluating their possible reuse (e.g. for irrigation in agriculture). In search for an improved accuracy and simplicity, methods based on the direct injection of the sample (DI) represent a recent trend taking advantage of the increasing sensitivity of new mass spectrometry (MS) instruments. Thus, the present study shows the development and validation of a DI-based method by ultra-high-performance liquid chromatography quadrupole-linear ion trap analyser (UHPLC-QqLIT-MS/MS). The proposed method was applied to the monitoring of 115 organic microcontaminants (including pharmaceuticals, TPs and pesticides) at the ngL-1/µgL-1 level in wastewater effluents from urban WWTPs. Sample pre-treatment was reduced to acetonitrile addition and filtration of the mixture previous to LC-MS analysis. Total analysis time was <15min. A subsequent validation protocol was carried out in treated WW (TWW), following indications of SANTE and Eurachem Guidelines. Linearity and matrix effect were evaluated in the range of 10-1000ngL-1. 70% of the analytes showed a moderate matrix effect (≤25%). Trueness (expressed as recovery) and precision (calculated as relative standard deviation, RSD) were evaluated at four concentration levels (20, 50, 500 and 1000ngL-1) in TWW samples. The LODs ranged from 1 to 357ngL-1 and the LOQs from 10 to 500ngL-1. 92% of the compounds showed limits of quantification ≤100ngL-1. In most cases, mean recoveries were in the range 70-120%, and RSD values were ≤20%. The validated method was successfully applied to the analysis of 10 TWW samples, demonstrating the occurrence of 67 target compounds at concentration levels from 26705ngL-1 (4-aminoantipyrine) to 10ngL-1 (tebuconazole and bezafibrate).


Subject(s)
Chromatography, High Pressure Liquid/methods , Pesticides/analysis , Tandem Mass Spectrometry/methods , Wastewater/analysis , Water Pollutants, Chemical/analysis , Chromatography, High Pressure Liquid/instrumentation , Limit of Detection , Pesticides/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...