Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
PLoS One ; 18(10): e0289334, 2023.
Article in English | MEDLINE | ID: mdl-37874837

ABSTRACT

New antibiotics are urgently needed due to the huge increase of multidrug-resistant bacteria. The underexplored gram-negative bacterium Enterobacter cloacae is known to cause severe urinary tract and lung infections (UTIs). The pathogenicity of E. cloacae in UTI has only been studied at the bioinformatic level, but until now not within systematic in vitro investigations. The present study assesses different human cell lines for monitoring the early steps of host-pathogen interaction regarding bacterial adhesion to and invasion into different host cells by flow cytometric adhesion assay, classical cell counting assay, gentamicin invasion assay, and confocal laser scanning microscopy. To our knowledge, this is the first report in which E. cloacae has been investigated for its interaction with human bladder, kidney, skin, and lung cell lines under in vitro conditions. Data indicate that E. cloacae exerts strong adhesion to urinary tract (bladder and kidney) and lung cells, a finding which correlates with the clinical relevance of the bacterium for induction of urinary tract and lung infections. Furthermore, E. cloacae ATCC 13047 barely adheres to skin cells (A-431) and shows no relevant interaction with intestinal cells (Caco-2, HT-29), even in the presence of mucin (HT29 MTX). In contrast, invasion assays and confocal laser scanning microscopy demonstrate that E. cloacae internalizes in all tested host cells, but to a different extent. Especially, bladder and kidney cells are being invaded to the highest extent. Defective mutants of fimH and fimA abolished the adhesion of E. cloacae to T24 cells, while csgA deletion had no influence on adhesion. These results indicate that E. cloacae has different pattern for adhesion and invasion depending on the target tissue, which again correlates with the clinical relevance of the pathogen. For detailed investigation of the early host-pathogen interaction T24 bladder cells comprise a suitable assay system for evaluation the bacterial adhesion and invasion.


Subject(s)
Enterobacter cloacae , Urinary Tract Infections , Humans , Caco-2 Cells , Anti-Bacterial Agents/pharmacology , Epithelial Cells
2.
Antibiotics (Basel) ; 11(4)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35453217

ABSTRACT

Campylobacter jejuni is a foodborne pathogen causing bacterial gastroenteritis, with the highest incidence reported in Europe. The prevalence of antibiotic resistance in C. jejuni, as well as in many other bacterial pathogens, has increased over the last few years. In this report, we describe the presence of a plasmid in a multi-drug-resistant C. jejuni strain isolated from a gastroenteritis patient. Mating experiments demonstrated the transference of this genetic element (pCjH01) among C. jejuni by plasmid conjugation. The pCjH01 plasmid was sequenced and assembled, revealing high similarity (97% identity) with pTet, a described tetracycline resistance encoding plasmid. pCjH01 (47.7 kb) is a mosaic plasmid composed of a pTet backbone that has acquired two discrete DNA regions. Remarkably, one of the acquired sequences carried an undescribed variant of the aadE-sat4-aphA-3 gene cluster, providing resistance to at least kanamycin and gentamycin. Aside from the antibiotic resistance genes, the cluster also carries genes coding for putative regulators, such as a sigma factor of the RNA polymerase and an antisigma factor. Homology searches suggest that Campylobacter exchanges genetic material with distant G-positive bacterial genera.

3.
Front Microbiol ; 11: 583, 2020.
Article in English | MEDLINE | ID: mdl-32318049

ABSTRACT

Salmonella enterica is the most frequently reported cause of foodborne illness. As in other microorganisms, chemotaxis affords key physiological benefits, including enhanced access to growth substrates, but also plays an important role in infection and disease. Chemoreceptor signaling core complexes, consisting of CheA, CheW and methyl-accepting chemotaxis proteins (MCPs), modulate the switching of bacterial flagella rotation that drives cell motility. These complexes, through the formation of heterohexameric rings composed of CheA and CheW, form large clusters at the cell poles. RecA plays a key role in polar cluster formation, impairing the assembly when the SOS response is activated. In this study, we determined that RecA protein interacts with both CheW and CheA. The binding of these proteins to RecA is needed for wild-type polar cluster formation. In silico models showed that one RecA molecule, attached to one signaling unit, fits within a CheA-CheW ring without interfering with the complex formation or array assembly. Activation of the SOS response is followed by an increase in RecA, which rises up the number of signaling complexes associated with this protein. This suggests the presence of allosteric inhibition in the CheA-CheW interaction and thus of heterohexameric ring formation, impairing the array assembly. STED imaging demonstrated that all core unit components (CheA, CheW, and MPCs) have the same subcellular location as RecA. Activation of the SOS response promotes the RecA distribution along the cell instead of being at the cell poles. CheA- and CheW- RecA interactions are also crucial for chemotaxis, which is maintained when the SOS response is induced and the signaling units are dispersed. Our results provide new molecular-level insights into the function of RecA in chemoreceptor clustering and chemotaxis determining that the impaired chemoreceptor clustering not only inhibits swarming but also modulates chemotaxis in SOS-induced cells, thereby modifying bacterial motility in the presence of DNA-damaging compounds, such as antibiotics.

4.
BMC Genomics ; 19(1): 373, 2018 May 21.
Article in English | MEDLINE | ID: mdl-29783948

ABSTRACT

BACKGROUND: The SOS response is an almost ubiquitous response of cells to genotoxic stresses. The full complement of genes in the SOS regulon for Vibrio species has only been addressed through bioinformatic analyses predicting LexA binding box consensus and in vitro validation. Here, we perform whole transcriptome sequencing from Vibrio cholerae treated with mitomycin C as an SOS inducer to characterize the SOS regulon and other pathways affected by this treatment. RESULTS: Comprehensive transcriptional profiling allowed us to define the full landscape of promoters and transcripts active in V. cholerae. We performed extensive transcription start site (TSS) mapping as well as detection/quantification of the coding and non-coding RNA (ncRNA) repertoire in strain N16961. To improve TSS detection, we developed a new technique to treat RNA extracted from cells grown in various conditions. This allowed for identification of 3078 TSSs with an average 5'UTR of 116 nucleotides, and peak distribution between 16 and 64 nucleotides; as well as 629 ncRNAs. Mitomycin C treatment induced transcription of 737 genes and 28 ncRNAs at least 2 fold, while it repressed 231 genes and 17 ncRNAs. Data analysis revealed that in addition to the core genes known to integrate the SOS regulon, several metabolic pathways were induced. This study allowed for expansion of the Vibrio SOS regulon, as twelve genes (ubiEJB, tatABC, smpA, cep, VC0091, VC1190, VC1369-1370) were found to be co-induced with their adjacent canonical SOS regulon gene(s), through transcriptional read-through. Characterization of UV and mitomycin C susceptibility for mutants of these newly identified SOS regulon genes and other highly induced genes and ncRNAs confirmed their role in DNA damage rescue and protection. CONCLUSIONS: We show that genotoxic stress induces a pervasive transcriptional response, affecting almost 20% of the V. cholerae genes. We also demonstrate that the SOS regulon is larger than previously known, and its syntenic organization is conserved among Vibrio species. Furthermore, this specific co-localization is found in other γ-proteobacteria for genes recN-smpA and rmuC-tatABC, suggesting SOS regulon conservation in this phylum. Finally, we comment on the limitations of widespread NGS approaches for identification of all RNA species in bacteria.


Subject(s)
Gene Expression Profiling , Regulon/genetics , SOS Response, Genetics/genetics , Vibrio cholerae/genetics , 5' Untranslated Regions/genetics , Mitomycin/pharmacology , Phenotype , SOS Response, Genetics/drug effects , Transcription Initiation Site/drug effects , Vibrio cholerae/drug effects
5.
Front Microbiol ; 8: 1360, 2017.
Article in English | MEDLINE | ID: mdl-28769915

ABSTRACT

Swarming motility is the rapid and coordinated multicellular migration of bacteria across a moist surface. During swarming, bacterial cells exhibit increased resistance to multiple antibiotics, a phenomenon described as adaptive or transient resistance. In this study, we demonstrate that sub-inhibitory concentrations of cefotaxime, ciprofloxacin, trimethoprim, or chloramphenicol, but not that of amikacin, colistin, kanamycin or tetracycline, impair Salmonella enterica swarming. Chloramphenicol-treated S. enterica cells exhibited a clear decrease in their flagellar content, while treatment with other antibiotics that reduced swarming (cefotaxime, ciprofloxacin, and trimethoprim) inhibited polar chemoreceptor array assembly. Moreover, the increased resistance phenotype acquired by swarming cells was abolished by the presence of these antimicrobials. The same occurred in cells treated with these antimicrobial agents in combination with others that had no effect on swarming motility. Our results reveal the potential of inhibiting swarming ability to enhance the therapeutic effectiveness of antimicrobial agents.

6.
Curr Microbiol ; 74(11): 1261-1269, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28744569

ABSTRACT

Water UV disinfection remains extremely important, particularly in developing countries where drinking and reclaimed crop irrigation water may spread devastating infectious diseases. Enteric bacterial pathogens, among which Shigella, are possible contaminants of drinking and bathing water and foods. To study the effect of UV light on Shigella, four strains were exposed to different doses in a laboratory-made irradiation device, given that the ultraviolet radiation degree of inactivation is directly related to the UV dose applied to water. Our results showed that the UV-C rays are effective against all the tested Shigella strains. However, UV-C doses appeared as determinant factors for Shigella eradication. On the other hand, Shigella-survived strains changed their outer membrane protein profiles, secreted proteins, and lipopolysaccharides. Also, as shown by electron microscopy transmission, morphological alterations were manifested by an internal cytoplasm disorganized and membrane envelope breaks. Taken together, the focus of interest of our study is to know the adaptive mechanism of UV-C resistance of Shigella strains.


Subject(s)
Shigella/physiology , Shigella/radiation effects , Ultraviolet Rays/adverse effects , Adaptation, Biological , Bacterial Outer Membrane Proteins , Dose-Response Relationship, Radiation , Kinetics , Lipopolysaccharides , Metabolomics/methods , Microbial Viability/radiation effects , Proteome , Proteomics/methods
7.
Front Microbiol ; 7: 1560, 2016.
Article in English | MEDLINE | ID: mdl-27766091

ABSTRACT

In addition to its role in DNA damage repair and recombination, the RecA protein, through its interaction with CheW, is involved in swarming motility, a form of flagella-dependent movement across surfaces. In order to better understand how SOS response modulates swarming, in this work the location of RecA and CheW proteins within the swarming cells has been studied by using super-resolution microscopy. Further, and after in silico docking studies, the specific RecA and CheW regions associated with the RecA-CheW interaction have also been confirmed by site-directed mutagenesis and immunoprecipitation techniques. Our results point out that the CheW distribution changes, from the cell poles to foci distributed in a helical pattern along the cell axis when SOS response is activated or RecA protein is overexpressed. In this situation, the CheW presents the same subcellular location as that of RecA, pointing out that the previously described RecA storage structures may be modulators of swarming motility. Data reported herein not only confirmed that the RecA-CheW pair is essential for swarming motility but it is directly involved in the CheW distribution change associated to SOS response activation. A model explaining not only the mechanism by which DNA damage modulates swarming but also how both the lack and the excess of RecA protein impair this motility is proposed.

8.
Front Mol Biosci ; 3: 33, 2016.
Article in English | MEDLINE | ID: mdl-27489856

ABSTRACT

The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

9.
Anal Chim Acta ; 904: 1-9, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26724759

ABSTRACT

A magneto-genosensing approach for the detection of the three most common pathogenic bacteria in food safety, such as Salmonella, Listeria and Escherichia coli is presented. The methodology is based on the detection of the tagged amplified DNA obtained by single-tagging PCR with a set of specific primers for each pathogen, followed by electrochemical magneto-genosensing on silica magnetic particles. A set of primers were selected for the amplification of the invA (278 bp), prfA (217 bp) and eaeA (151 bp) being one of the primers for each set tagged with fluorescein, biotin and digoxigenin coding for Salmonella enterica, Listeria monocytogenes and E. coli, respectively. The single-tagged amplicons were then immobilized on silica MPs based on the nucleic acid-binding properties of silica particles in the presence of the chaotropic agent as guanidinium thiocyanate. The assessment of the silica MPs as a platform for electrochemical magneto-genosensing is described, including the main parameters to selectively attach longer dsDNA fragments instead of shorter ssDNA primers based on their negative charge density of the sugar-phosphate backbone. This approach resulted to be a promising detection tool with sensing features of rapidity and sensitivity very suitable to be implemented on DNA biosensors and microfluidic platforms.


Subject(s)
Escherichia coli/isolation & purification , Listeria/isolation & purification , Magnetics , Salmonella/isolation & purification , Silicon Dioxide/chemistry , Escherichia coli/genetics , Listeria/genetics , Microscopy, Electron, Scanning , Polymerase Chain Reaction , Salmonella/genetics
10.
PLoS One ; 11(1): e0146685, 2016.
Article in English | MEDLINE | ID: mdl-26784887

ABSTRACT

Swarming, a flagellar-driven multicellular form of motility, is associated with bacterial virulence and increased antibiotic resistance. In this work we demonstrate that activation of the SOS response reversibly inhibits swarming motility by preventing the assembly of chemoreceptor-signaling polar arrays. We also show that an increase in the concentration of the RecA protein, generated by SOS system activation, rather than another function of this genetic network impairs chemoreceptor polar cluster formation. Our data provide evidence that the molecular balance between RecA and CheW proteins is crucial to allow polar cluster formation in Salmonella enterica cells. Thus, activation of the SOS response by the presence of a DNA-injuring compound increases the RecA concentration, thereby disturbing the equilibrium between RecA and CheW and resulting in the cessation of swarming. Nevertheless, when the DNA-damage decreases and the SOS response is no longer activated, basal RecA levels and thus polar cluster assembly are reestablished. These results clearly show that bacterial populations moving over surfaces make use of specific mechanisms to avoid contact with DNA-damaging compounds.


Subject(s)
Bacterial Proteins/metabolism , SOS Response, Genetics , Salmonella enterica/metabolism , Bacterial Proteins/genetics , Chemotaxis , Protein Binding , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Salmonella enterica/genetics , Signal Transduction
11.
Biosens Bioelectron ; 74: 652-9, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26201982

ABSTRACT

Simultaneous detection of Salmonella enterica, Listeria monocytogenes and Escherichia coli based on triple-tagging multiplex PCR and electrochemical magneto genosensing on silica magnetic particles is reported. A set of tagging primers were selected for the specific amplification of yfiR (375 bp), hlyA (234 bp) and eaeA (151bp), being one of the primers for each set labelled with fluorescein, biotin and digoxigenin coding for S. enterica, L. monocytogenes and E. coli, respectively. Afterwards, electrochemical magneto genosensing of the bacteria was achieved by using silica magnetic particles as a carrier and three different electrochemical reporters, specific for each pathogen. This method was able to clearly distinguish among the pathogenic bacteria tested within 50 min, with detection limits ranging from 12 to 46 pg µL(-1).


Subject(s)
Bacterial Load/instrumentation , Conductometry/instrumentation , Food Analysis/instrumentation , Food Contamination/analysis , Food Microbiology/instrumentation , Magnetometry/instrumentation , Biosensing Techniques/instrumentation , Complex Mixtures/analysis , Equipment Design , Equipment Failure Analysis , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Micro-Electrical-Mechanical Systems/instrumentation , Reproducibility of Results , Sensitivity and Specificity , Silicon Dioxide/chemistry , Systems Integration
12.
Talanta ; 143: 198-204, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26078149

ABSTRACT

This paper addresses a comparative study of immunomagnetic separation of Salmonella using micro and nano-sized magnetic carriers. In this approach, nano (300 nm) and micro (2.8 µm) sized magnetic particles were modified with anti-Salmonella antibody to pre-concentrate the bacteria from the samples throughout an immunological reaction. The performance of the immunomagnetic separation on the different magnetic carriers was evaluated using classical culturing, confocal and scanning electron microscopy to study the binding pattern, as well as a magneto-actuated immunosensor with electrochemical read-out for the rapid detection of the bacteria in spiked milk samples. In this approach, a second polyclonal antibody labeled with peroxidase as electrochemical reporter was used. The magneto-actuated electrochemical immunosensor was able to clearly distinguish between food pathogenic bacteria such as Salmonella enterica and Escherichia coli, showing a limit of detection (LOD) as low as 538 CFU mL(-1) and 291 CFU mL(-1) for magnetic micro and nanocarriers, respectively, in whole milk, although magnetic nanoparticles showed a noticeable higher matrix effect and higher agglomeration effect. These LODs were achieved in a total assay time of 1h without any previous culturing pre-enrichment step. If the samples were pre-enriched for 8 h, the magneto immunosensor based on the magnetic nanoparticles was able to detect as low as 1 CFU in 25 mL of milk (0.04 CFU mL(-1)).


Subject(s)
Immunomagnetic Separation/methods , Magnets/chemistry , Microspheres , Nanoparticles/chemistry , Salmonella enterica/isolation & purification , Animals , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Electrochemistry , Escherichia coli/immunology , Escherichia coli/isolation & purification , Limit of Detection , Milk/microbiology , Salmonella enterica/immunology
13.
J Bacteriol ; 197(16): 2622-30, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25986903

ABSTRACT

UNLABELLED: The SOS response is a transcriptional regulatory network governed by the LexA repressor that activates in response to DNA damage. In the Betaproteobacteria, LexA is known to target a palindromic sequence with the consensus sequence CTGT-N8-ACAG. We report the characterization of a LexA regulon in the iron-oxidizing betaproteobacterium Sideroxydans lithotrophicus. In silico and in vitro analyses show that LexA targets six genes by recognizing a binding motif with the consensus sequence GAACGaaCGTTC, which is strongly reminiscent of the Bacillus subtilis LexA-binding motif. We confirm that the closely related Gallionella capsiferriformans shares the same LexA-binding motif, and in silico analyses indicate that this motif is also conserved in the Nitrosomonadales and the Methylophilales. Phylogenetic analysis of LexA and the alpha subunit of DNA polymerase III (DnaE) reveal that the organisms harboring this noncanonical LexA form a compact taxonomic cluster within the Betaproteobacteria. However, their lexA gene is unrelated to the standard Betaproteobacteria lexA, and there is evidence of its spread through lateral gene transfer. In contrast to other reported cases of noncanonical LexA-binding motifs, the regulon of S. lithotrophicus is comparable in size and function to that of many other Betaproteobacteria, suggesting that a convergent SOS regulon has reevolved under the control of a new LexA protein. Analysis of the DNA-binding domain of S. lithotrophicus LexA reveals little sequence similarity with that of other LexA proteins targeting similar binding motifs, suggesting that network structure may limit site evolution or that structural constrains make the B. subtilis-type motif an optimal interface for multiple LexA sequences. IMPORTANCE: Understanding the evolution of transcriptional systems enables us to address important questions in microbiology, such as the emergence and transfer potential of different regulatory systems to regulate virulence or mediate responses to stress. The results reported here constitute the first characterization of a noncanonical LexA protein regulating a standard SOS regulon. This is significant because it illustrates how a complex transcriptional program can be put under the control of a novel transcriptional regulator. Our results also reveal a substantial degree of plasticity in the LexA recognition domain, raising intriguing questions about the space of protein-DNA interfaces and the specific evolutionary constrains faced by these elements.


Subject(s)
Bacterial Proteins/metabolism , Betaproteobacteria/genetics , Gene Expression Regulation, Bacterial , Regulon , SOS Response, Genetics , Serine Endopeptidases/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Base Sequence , Betaproteobacteria/classification , Betaproteobacteria/metabolism , Comparative Genomic Hybridization , Consensus Sequence , DNA, Bacterial/genetics , Gene Transfer, Horizontal , Molecular Sequence Data , Phylogeny , Promoter Regions, Genetic , Protein Binding , Protein Structure, Tertiary , Sequence Alignment , Serine Endopeptidases/genetics , Transcriptional Activation
14.
PLoS One ; 9(8): e105578, 2014.
Article in English | MEDLINE | ID: mdl-25147953

ABSTRACT

The RecA protein is the main bacterial recombinase and the activator of the SOS system. In Escherichia coli and Salmonella enterica sv. Typhimurium, RecA is also essential for swarming, a flagellar-driven surface translocation mechanism widespread among bacteria. In this work, the direct interaction between RecA and the CheW coupling protein was confirmed, and the motility and chemotactic phenotype of a S. Typhimurium ΔrecA mutant was characterized through microfluidics, optical trapping, and quantitative capillary assays. The results demonstrate the tight association of RecA with the chemotaxis pathway and also its involvement in polar chemoreceptor cluster formation. RecA is therefore necessary for standard flagellar rotation switching, implying its essential role not only in swarming motility but also in the normal chemotactic response of S. Typhimurium.


Subject(s)
Bacterial Proteins/metabolism , Chemotaxis/immunology , Rec A Recombinases/metabolism , Salmonella enterica/immunology , Salmonella enterica/metabolism , Bacterial Proteins/genetics , Chemotaxis/genetics , Flagella/genetics , Flagella/metabolism , Gene Deletion , Mutation , Protein Binding , Rec A Recombinases/genetics , Salmonella enterica/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/immunology , Salmonella typhimurium/metabolism
15.
Chemosphere ; 93(11): 2675-82, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24041568

ABSTRACT

Pall rings, a common random packing material, were used in the biotrickling filtration of biogas with high H2S. Assessment of 600d of operation covered the reactor start-up, the operation at neutral pH and the transition from neutral to acid pH. During the start-up period, operational parameters such as the aeration rate and the trickling liquid velocity were optimized. During the steady-state operation at neutral pH, the performance of the random packing material was investigated by reducing the gas contact time at both constant and increasing H2S loads. The random packing material showed similar elimination capacities and removal efficiencies in comparison with previous studies with a structured packing material, indicating that Pall rings are suitable for biogas desulfurization in biotrickling filters. The diversity of Eubacteria and the structure of the community were investigated before and after the pH transition using the bacterial tag-encoded FLX amplicon pyrosequencing. The pH transition to acid pH drastically reduced the microbial diversity and produced a progressive specialization of the sulfur-oxidizing bacteria community without any detrimental effect on the overall desulfurizing capacity of the reactor. During acidic pH operation, a persistent accumulation of elemental sulfur was found.


Subject(s)
Bioreactors/microbiology , Filtration/instrumentation , Hydrogen Sulfide/analysis , Water Pollutants, Chemical/analysis , Bacteria/metabolism , Biodegradation, Environmental , Biofuels , Hydrogen Sulfide/metabolism , Hydrogen-Ion Concentration , Models, Chemical , Water Pollutants, Chemical/metabolism
16.
Nucleic Acids Res ; 41(15): 7260-75, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23771138

ABSTRACT

The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria.


Subject(s)
Enterococcus faecalis/virology , Siphoviridae/physiology , Transcriptional Activation , Virus Assembly , Virus Release , Base Sequence , Gene Deletion , Gene Expression Regulation, Viral , Genome, Viral , Molecular Sequence Data , Multigene Family , Mutation , Operon , Promoter Regions, Genetic , Prophages/genetics , Prophages/metabolism , Repetitive Sequences, Nucleic Acid , Siphoviridae/genetics , Siphoviridae/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
17.
PLoS One ; 8(4): e61630, 2013.
Article in English | MEDLINE | ID: mdl-23637869

ABSTRACT

Bacterial motility is associated to a wide range of biological processes and it plays a key role in the virulence of many pathogens. Here we describe a method to distinguish the dynamic properties of bacteria by analyzing the statistical functions derived from the trajectories of a bacterium trapped by a single optical beam. The approach is based on the model of the rotation of a solid optically trapped sphere. The technique is easily implemented in a biological laboratory, since with only a small number of optical and electronic components a simple biological microscope can be converted into the required analyzer. To illustrate the functionality of this method, we probed several Salmonella enterica serovar Typhimurium mutants that differed from the wild-type with respect to their swimming patterns. In a further application, the motility dynamics of the S. Typhimurium cheV mutant were characterized.


Subject(s)
Movement , Optical Tweezers , Salmonella typhimurium/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Flagella/metabolism , Mutation , Salmonella typhimurium/cytology , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism
18.
J Bacteriol ; 194(14): 3708-22, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22582278

ABSTRACT

The Rcs phosphorelay pathway is a complex signaling pathway involved in the regulation of many cell surface structures in enteric bacteria. In response to environmental stimuli, the sensor histidine kinase (RcsC) autophosphorylates and then transfers the phosphate through intermediary steps to the response regulator (RcsB), which, once phosphorylated, regulates gene expression. Here, we show that Salmonella biofilm development depends on the phosphorylation status of RcsB. Thus, unphosphorylated RcsB, hitherto assumed to be inactive, is essential to activate the expression of the biofilm matrix compounds. The prevention of RcsB phosphorylation either by the disruption of the phosphorelay at the RcsC or RcsD level or by the production of a nonphosphorylatable RcsB allele induces biofilm development. On the contrary, the phosphorylation of RcsB by the constitutive activation of the Rcs pathway inhibits biofilm development, an effect that can be counteracted by the introduction of a nonphosphorylatable RcsB allele. The inhibition of biofilm development by phosphorylated RcsB is due to the repression of CsgD expression, through a mechanism dependent on the accumulation of the small noncoding RNA RprA. Our results indicate that unphosphorylated RcsB plays an active role for integrating environmental signals and, more broadly, that RcsB phosphorylation acts as a key switch between planktonic and sessile life-styles in Salmonella enterica serovar Typhimurium.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Gene Expression Regulation, Bacterial/physiology , Salmonella enteritidis/physiology , Salmonella typhimurium/physiology , Amino Acid Sequence , Amino Acid Substitution , Bacterial Proteins/genetics , Escherichia coli/classification , Escherichia coli/metabolism , Mutation , Phosphorylation/physiology , Signal Transduction/physiology
19.
BMC Genomics ; 13: 58, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22305460

ABSTRACT

BACKGROUND: The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. RESULTS: Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae) that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. CONCLUSIONS: Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an essential role in these organisms and sheds light into the mechanisms of evolution of global transcriptional networks involved in adaptability and rapid response to environmental changes, suggesting that small chromosomes may act as evolutionary test beds for the rewiring of transcriptional networks.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Chromosomes, Bacterial , SOS Response, Genetics , Vibrio/genetics , Vibrio/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cluster Analysis , Gene Expression Regulation, Bacterial , Gene Order , Genes, Bacterial , Humans , Operon , Promoter Regions, Genetic , Proteobacteria/genetics , Proteobacteria/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
20.
PLoS One ; 6(5): e19711, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21573071

ABSTRACT

Previous studies have established that the expression of Salmonella enterica pathogenicity island 1 (SPI1), which is essential for epithelial invasion, is mainly regulated by the HilD protein. The ferric uptake regulator, Fur, in turn modulates the expression of the S. enterica hilD gene, albeit through an unknown mechanism. Here we report that S. enterica Fur, in its metal-bound form, specifically binds to an AT-rich region (BoxA), located upstream of the hilD promoter (P(hilD)), at position -191 to -163 relative to the hilD transcription start site. Furthermore, in a P(hilD) variant with mutations in BoxA, P(hilD*), Fur·Mn(2+) binding is impaired. In vivo experiments using S. enterica strains carrying wild-type P(hilD) or the mutant variant P(hilD*) showed that Fur activates hilD expression, while in vitro experiments revealed that the Fur·Mn(2+) protein is sufficient to increase hilD transcription. Together, these results present the first evidence that Fur·Mn(2+), by binding to the upstream BoxA sequence, directly stimulates the expression of hilD in S. enterica.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Genomic Islands/genetics , Operator Regions, Genetic/genetics , Salmonella enterica/genetics , Base Sequence , DNA Footprinting , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial/drug effects , Iron/pharmacology , Manganese/metabolism , Models, Biological , Molecular Sequence Data , Mutation/genetics , Protein Binding/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Salmonella enterica/drug effects , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...