Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Eng Sci Med ; 46(4): 1399-1410, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37548887

ABSTRACT

In US-guided cardiac radioablation, a possible workflow includes simultaneous US and planning CT acquisitions, which can result in US transducer-induced metal artifacts on the planning CT scans. To reduce the impact of these artifacts, a metal artifact reduction (MAR) algorithm has been developed based on a deep learning Generative Adversarial Network called Cycle-MAR, and compared with iMAR (Siemens), O-MAR (Philips) and MDT (ReVision Radiology), and CCS-MAR (Combined Clustered Scan-based MAR). Cycle-MAR was trained with a supervised learning scheme using sets of paired clinical CT scans with and without simulated artifacts. It was then evaluated on CT scans with real artifacts of an anthropomorphic phantom, and on sets of clinical CT scans with simulated artifacts which were not used for Cycle-MAR training. Image quality metrics and HU value-based analysis were used to evaluate the performance of Cycle-MAR compared to the other algorithms. The proposed Cycle-MAR network effectively reduces the negative impact of the metal artifacts. For example, the calculated HU value improvement percentage for the cardiac structures in the clinical CT scans was 59.58%, 62.22%, and 72.84% after MDT, CCS-MAR, and Cycle-MAR application, respectively. The application of MAR algorithms reduces the impact of US transducer-induced metal artifacts on CT scans. In comparison to iMAR, O-MAR, MDT, and CCS-MAR, the application of developed Cycle-MAR network on CT scans performs better in reducing these metal artifacts.


Subject(s)
Artifacts , Deep Learning , Metals , Tomography, X-Ray Computed/methods , Ultrasonography, Interventional
2.
Phys Eng Sci Med ; 45(4): 1273-1287, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36352318

ABSTRACT

Cardiac radioablation is a promising treatment for cardiac arrhythmias, but accurate dose delivery can be affected by heart motion. For this reason, real-time cardiac motion monitoring during radioablation is of paramount importance. Real-time ultrasound (US) guidance can be a solution. The US-guided cardiac radioablation workflow can be simplified by the simultaneous US and planning computed tomography (CT) acquisition, which can result in US transducer-induced metal artifacts on the planning CT scans. To reduce the impact of these artifacts, a new metal artifact reduction (MAR) algorithm (named: Combined Clustered Scan-based MAR [CCS-MAR]) has been developed and compared with iMAR (Siemens), O-MAR (Philips) and MDT (ReVision Radiology) algorithms. CCS-MAR is a fully automated sinogram inpainting-based MAR algorithm, which uses a two-stage correction process based on a normalized MAR method. The second stage aims to correct errors remaining from the first stage to create an artifact-free combined clustered scan for the process of metal artifact reduction. To evaluate the robustness of CCS-MAR, conventional CT scans and/or dual-energy CT scans from three anthropomorphic phantoms and transducers with different sizes were used. The performance of CCS-MAR for metal artifact reduction was compared with other algorithms through visual comparison, image quality metrics analysis, and HU value restoration evaluation. The results of this study show that CCS-MAR effectively reduced the US transducer-induced metal artifacts and that it improved HU value accuracy more or comparably to other MAR algorithms. These promising results justify future research into US transducer-induced metal artifact reduction for the US-guided cardiac radioablation purposes.


Subject(s)
Artifacts , Metals , Algorithms , Phantoms, Imaging , Ultrasonography, Interventional
3.
J Appl Clin Med Phys ; 22(6): 198-223, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33938608

ABSTRACT

Metal artifact reduction (MAR) methods are used to reduce artifacts from metals or metal components in computed tomography (CT). In radiotherapy (RT), CT is the most used imaging modality for planning, whose quality is often affected by metal artifacts. The aim of this study is to systematically review the impact of MAR methods on CT Hounsfield Unit values, contouring of regions of interest, and dose calculation for RT applications. This systematic review is performed in accordance with the PRISMA guidelines; the PubMed and Web of Science databases were searched using the main keywords "metal artifact reduction", "computed tomography" and "radiotherapy". A total of 382 publications were identified, of which 40 (including one review article) met the inclusion criteria and were included in this review. The selected publications (except for the review article) were grouped into two main categories: commercial MAR methods and research-based MAR methods. Conclusion: The application of MAR methods on CT scans can improve treatment planning quality in RT. However, none of the investigated or proposed MAR methods was completely satisfactory for RT applications because of limitations such as the introduction of other errors (e.g., other artifacts) or image quality degradation (e.g., blurring), and further research is still necessary to overcome these challenges.


Subject(s)
Artifacts , Tomography, X-Ray Computed , Algorithms , Humans , Metals , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
4.
Article in English | MEDLINE | ID: mdl-31944954

ABSTRACT

Knee arthroscopy is a complex minimally invasive surgery that can cause unintended injuries to femoral cartilage or postoperative complications, or both. Autonomous robotic systems using real-time volumetric ultrasound (US) imaging guidance hold potential for reducing significantly these issues and for improving patient outcomes. To enable the robotic system to navigate autonomously in the knee joint, the imaging system should provide the robot with a real-time comprehensive map of the surgical site. To this end, the first step is automatic image quality assessment, to ensure that the boundaries of the relevant knee structures are defined well enough to be detected, outlined, and then tracked. In this article, a recently developed one-class classifier deep learning algorithm was used to discriminate among the US images acquired in a simulated surgical scenario on which the femoral cartilage either could or could not be outlined. A total of 38 656 2-D US images were extracted from 151 3-D US volumes, collected from six volunteers, and were labeled as "1" or as "0" when an expert was or was not able to outline the cartilage on the image, respectively. The algorithm was evaluated using the expert labels as ground truth with a fivefold cross validation, where each fold was trained and tested on average with 15 640 and 6246 labeled images, respectively. The algorithm reached a mean accuracy of 78.4% ± 5.0, mean specificity of 72.5% ± 9.4, mean sensitivity of 82.8% ± 5.8, and mean area under the curve of 85% ± 4.4. In addition, interobserver and intraobserver tests involving two experts were performed on an image subset of 1536 2-D US images. Percent agreement values of 0.89 and 0.93 were achieved between two experts (i.e., interobserver) and by each expert (i.e., intraobserver), respectively. These results show the feasibility of the first essential step in the development of automatic US image acquisition and interpretation systems for autonomous robotic knee arthroscopy.


Subject(s)
Arthroscopy/methods , Deep Learning , Image Interpretation, Computer-Assisted/methods , Knee Joint/diagnostic imaging , Ultrasonography/methods , Adult , Algorithms , Cartilage/diagnostic imaging , Cartilage/surgery , Femur/diagnostic imaging , Femur/surgery , Humans , Knee Joint/surgery , Young Adult
5.
Biomed Res Int ; 2018: 7569590, 2018.
Article in English | MEDLINE | ID: mdl-29619375

ABSTRACT

External beam radiotherapy (EBRT) is one of the curative treatment options for prostate cancer patients. The aim of this treatment option is to irradiate tumor tissue, while sparing normal tissue as much as possible. Frequent imaging during the course of the treatment (image guided radiotherapy) allows for determination of the location and shape of the prostate (target) and of the organs at risk. This information is used to increase accuracy in radiation dose delivery resulting in better tumor control and lower toxicity. Ultrasound imaging is harmless for the patient, it is cost-effective, and it allows for real-time volumetric organ tracking. For these reasons, it is an ideal technique for image guidance during EBRT workflows. Review papers have been published in which the use of ultrasound imaging in EBRT workflows for different cancer sites (prostate, breast, etc.) was extensively covered. This new review paper aims at providing the readers with an update on the current status for prostate cancer ultrasound guided EBRT treatments.


Subject(s)
Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Ultrasonography , Workflow , Humans , Image Processing, Computer-Assisted , Male , Monitoring, Physiologic
6.
Med Phys ; 43(4): 1913, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27036587

ABSTRACT

PURPOSE: Imaging of patient anatomy during treatment is a necessity for position verification and for adaptive radiotherapy based on daily dose recalculation. Ultrasound (US) image guided radiotherapy systems are currently available to collect US images at the simulation stage (USsim), coregistered with the simulation computed tomography (CT), and during all treatment fractions. The authors hypothesize that a deformation field derived from US-based deformable image registration can be used to create a daily pseudo-CT (CTps) image that is more representative of the patients' geometry during treatment than the CT acquired at simulation stage (CTsim). METHODS: The three prostate patients, considered to evaluate this hypothesis, had coregistered CT and US scans on various days. In particular, two patients had two US-CT datasets each and the third one had five US-CT datasets. Deformation fields were computed between pairs of US images of the same patient and then applied to the corresponding USsim scan to yield a new deformed CTps scan. The original treatment plans were used to recalculate dose distributions in the simulation, deformed and ground truth CT (CTgt) images to compare dice similarity coefficients, maximum absolute distance, and mean absolute distance on CT delineations and gamma index (γ) evaluations on both the Hounsfield units (HUs) and the dose. RESULTS: In the majority, deformation did improve the results for all three evaluation methods. The change in gamma failure for dose (γDose, 3%, 3 mm) ranged from an improvement of 11.2% in the prostate volume to a deterioration of 1.3% in the prostate and bladder. The change in gamma failure for the CT images (γCT, 50 HU, 3 mm) ranged from an improvement of 20.5% in the anus and rectum to a deterioration of 3.2% in the prostate. CONCLUSIONS: This new technique may generate CTps images that are more representative of the actual patient anatomy than the CTsim scan.


Subject(s)
Abdomen , Image Processing, Computer-Assisted , Prostate/diagnostic imaging , Radiotherapy, Image-Guided , Tomography, X-Ray Computed , Ultrasonography , Humans , Male , Prostate/radiation effects , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...